期刊文献+

WO3对Rubrene/C70有机太阳能电池性能的改善 被引量:2

Performance improvement of Rubrene/C_(70) based organic solar cells with WO_3 as buffer layer
原文传递
导出
摘要 研究了WO3对Rubrene/C70有机太阳能电池(OSCs)性能的改善,制备了结构为ITO/WO3/Rubrene/C70/BCP/Al的OSCs,其中WO3插入在ITO和Rubrene中间作为阳极修饰层。通过优化WO3的厚度,研究了WO3对OSCs性能的改善及其作用机理。实验发现,器件的短路电流Jsc、开路电压Voc、填充因子(FF)、光电转换效率(PCE)和串联电阻Rs等性能参数随WO3厚度的变化呈规律性变化;当WO3厚度小于80nm时,器件PCE随着厚度的增加不断增大;当WO3厚大于80nm时,器件PCE随着厚度的增加不断减小;当WO3厚度为80nm时,器件PCE达到最高为1.03%,相应的Jsc、Voc、FF分别为2.81mA·cm-2、0.83V、43.85%,Rs为45.3Ω·cm2,对比没有WO3修饰层,器件的Jsc、Voc、FF和PCE分别提高了31%、137%、17%和268%,Rs降低了33%。 The performance improvement of Rubrene/C70 based organic solar cells (OSCs) with WO3 as buffer layer is studied in this paper. The OSCs with the structure of ITO/WO3/Rubrene/C70/BCP/Al were fabricated. WO3 was used as anode buffer layer,inserted between ITO and Rubrene. The perform- ance and mechanism of the OSCs are studied by inserting WOa with different thicknesses as buffer layer. The experimental results show that the characteristic parameters of the OSCs,including the short-circuit current (Jsc), open-circuit voltage (Voc), filling factor (FF), series resistance (Rs) and power conversion efficiency (PCE) ,have a regular change with different WO3thicknesses as buffer layers. The PCE of the OSCs is increased with the increasing thickness of WO3, when the thickness is smaller than 80 nm. The PCE of the OSCs is decreased with the increasing thickness of WO3 ,when the thickness is larger than 80 nm. The PCE of the device is as high as 1.03 % with 80 m-thick WO3 while the Jsc ,Voc, FF and Rs of the OSCs are 2.81 mA · cm^-2 ,0. 83 V,43.85% and 45.3 Ω· cm^2 ,respectively. Compared with the device without buffer layer,the Jso ,Voc ,FF and PCE of the OSCs are enhanced by 31%, 137% ,17% and 268% ,respectively. Rs is reduced by 33%.
机构地区 暨南大学物理系
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第1期63-67,共5页 Journal of Optoelectronics·Laser
基金 广东省自然科学基金(S2013010012856) 华南理工大学发光材料与器件国家重点实验室开放资助项目
关键词 有机太阳能电池(OSCs) WO3 修饰层 RUBRENE C70 organic solar cells (OSCs) tungsten oxide (WO3) buffer layer Rubrene C70
  • 相关文献

参考文献23

  • 1Brabec C J.Organic photovoltaics:technology and market[J].Sol ar Energy M aterials and Solar Cells,2004,83(2-3):273-292.
  • 2Krebs F C,Mikkel J,Norrman K,et al.A complete proce-ss for produ ction of flexible large area polymer solar cells entirely using screen printing—First public demonstration[J].Solar Ene rgy Materials and Solar Cells,2009,93(4):422-441.
  • 3Kawanoa K,Paciosc R,Poplavskyyc D,et al.Degradation of organic solar cells due to air exposure[J].Solar Energy Materials and Solar Cells,2006,90(20):3520-3530.
  • 4de Jong M P,van I Jzendoorn L J,de Voigt M J A.Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitt ing diodes[J].Applied Physics Letters,2000,77(14):2255-2257.
  • 5You H,Dai Y F,Zhang Z Q,et al.Metal oxides as interlayer on ind ium tin oxide for high performance organic light-emitting diodes[A].Proc.of Asia Display 2007International Conference ( AD′07)[C].2007,1469-1472.
  • 6Meyel J,Hamwi S,Kroger M,et al.Transiton metal oxides for orga nic electronics:energetics device physics and applications[J].Advanced Materials,2012,24(40):5408-5427.
  • 7Ng A,Liu X,Djurisic A B,et al.Effect of transition metal oxide anode interlayer in bulk heterojunction solar cells[A].Proc.of Oxide-based Materials and Devices IV[C].2013,1V-1-86261V-6.
  • 8Huang J H,Chou C Y,Lin C F.Efficient and air-stable polymer ph otovoltaic devices with WO3-V2O5mixed oxides as anodic modification[J].Electron Device Letters,IEEE,2010,31(4):332-334.
  • 9Varnamkhasti M G, Fallah H R, Mostajaboddavati M, et al.Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells[J].Solar Energy Materials and Solar Cells,2012,98:379-384.
  • 10Lampande R,Kim G W,Boizot J,et al.A highly effic ient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells[J].Journal of M aterials Chemistry A,2013,1(23):6895-6900.

二级参考文献29

  • 1陈跃宁,徐证,张馨芳,汪鹏.聚合物掺杂富勒烯衍生物光伏特性的研究[J].光电子.激光,2009,20(9):1163-1165. 被引量:4
  • 2MA ChaoZhu1,MENG WeiMin2,PENG YingQuan1,2,WANG RunSheng1,LI RongHua1,XIE HongWei1,WANG Ying1 & YE ZaoChen1 1 Institute of Microelectronics of School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China,2 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China.Numerical study on short-circuit current of single layer organic solar cells with Schottkey contacts[J].Science China(Technological Sciences),2010,53(4):1023-1027. 被引量:3
  • 3Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic [J]. Nature, 2004, 428 (02498) :911-918.
  • 4Xue J,Rand B P,Uchida S,et al. A hybrid planar-mixed molecular heterojunction photovoltaic cell[J]. Adv. Mater,2005,17(1) :66-71.
  • 5Kim J Y,Lee K,Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007,317(5835): 222-225.
  • 6Sista S, Park M H, Hong Z R, et al. Highly efficient tandem polymer photovoltaic cells[J]. Adv. Mater, 2010,2,2 (3) : 380-383.
  • 7Yu G, Gao J, Heeger A J, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions [ J]. Science, 1995, 270 (5243) :1789-1791.
  • 8Yakimov A, Forrest S R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters [J]. Appl. Phys. Lett., 2002, 80 (17): 1667-1669.
  • 9Drechsel J, Manning B, Hoppe H, et al. Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers[J]. AppI. Phys. Lett., 2005,86(24) :244102 : 1-24410:3.
  • 10Ohan M Y,Lai S L,Fung M K,et al. Doping-induced efficiency enhancement in organic photovoltaic devices[J]. Appl. Phys. Left. ,2007,90(2) :023504-]-3.

共引文献9

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部