期刊文献+

耦合时滞光电反馈系统的同步研究 被引量:1

Synchronization of coupled delayed-feedback electro-optical systems
原文传递
导出
摘要 同步是实现保密通信的基础,现有的基于时滞光电反馈混沌系统的同步研究主要集中在实现方面。本文利用Lyapunov函数法,从理论研究耦合时滞光电反馈混沌系统的同步问题,包括单向耦合和双向耦合两种形式。结果表明,耦合时滞光电反馈混沌系统能够实现鲁棒同步。对理论结果进行了数值实验分析,结果与理论分析相一致。 With the popularity of all-optical networks, the delayed electrcroptical feedback chaotic systems are more and more widely used in secure communications. Synchronization is the basis for secure communications,while nowadays,the studies on the synchronization of delayed electro-optical feedback chaotic systems are almost based on the experiment analysis, which are lack of theoretical proofs. In this paper, we will use the so-called Lyapunov function method to study the synchronization of coupled delayed electro-optical feedback systems,including both one directional coupling and bi-directional coupling. The theoretical analysis shows that the delayed electro-optical feedback chaotic systems can achieve robust synchronization. Furthermore, we give some numerical simulations, which are consistent with the theo- retical analysis results.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第1期86-90,共5页 Journal of Optoelectronics·Laser
关键词 时滞光电反馈系统 同步 耦合 delayed-feedback electro-optical system synchronization coupling
  • 相关文献

参考文献16

  • 1Pecora L M,Carroll T L.Synchronization in chaotic systems[J] .Physical Review Letters,1990,64(8):821-824.
  • 2Hu H P,Su W,Liu L F,et al.Electro-optic intensity chaotic sy stem with varying parameters[J]Physics Letters A,2014, 378(3):184-190.
  • 3Goedgebuer J P,Levy P,Larger L,et al,Optical communica tion with synchronized hyperchaos generated electrooptically[J].IEEE J.Quantum Electronics,2002,38(9):1178-1183.
  • 4Perez G, Cerdeira H.Extracting messages masked by chaos[J].Phy sical Review Letters,1995,74(11):1970-1973.
  • 5Beth T,Lazic D E,Mathias A.Cryptanalysis of cryptosystems base d on remote chaos replication[A].Proc.of In Lecture Notes in Computer Science[C].Berlin,Springer-Verlag,1994,318-331.
  • 6Short K M,Parker AT,Unmasking a hyperchaotic communication sch eme[J].Physical Review E,1998,58(1):1159-1162.
  • 7Murphy T E, Cohen A B, Ravoori B.Complex dynamics and synchroniza tion of delayed-feedback nonlinear oscillators[J].Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2010,368(1911):343-366.
  • 8Michail B,Apostolos A,Dimitris S.Sensitivity analysis of a star optical network based on mutually coupled semiconductor lasers[J].Journal of Lightwave Technology,2012,30(16):2618-2624.
  • 9Nguimdo R M,Colet P,Mirasso C.Electro-optic delay devices with double feedback[J].IEEE J.Quantum Electronics, 2010,46(10):1436-1443.
  • 10Larger L, Goedgebuer J P, Udaltsov V S, et al.Radio -transmission system using high dimensional chaotic oscillator[J].Electronics Letters,2001,37(9):594-595.k.

二级参考文献17

  • 1袁建国,叶文伟,毛幼菊.光通信系统中基于LDPC码的SFEC码型研究[J].光电子.激光,2009,20(11):1450-1453. 被引量:10
  • 2MacKay D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transaction on Information Theory, 1999,45(2) : 399-431.
  • 3MacKay D J C,Neal R M. Near shannon limit performance of low density parity check codes[J]. Electronic Letters, 1996,32(18) :1645-1646.
  • 4Lan L,Zeng L Q,Tai Y Y,et al. Construction of quasi-cy- clic LDPC codes for AWGN and binary erasure channels, a finite field approach[J]. IEEE Transaction on Informa- tion Theory, 2007,53(7) : 2429-2458.
  • 5Fossorier M P C. Quasi cyclic low-density parity-check codes from circulant permutation matrices [J]. IEEE Transaction on Information Theory, 2004, 50 (8) : 1788- 1793.
  • 6Myung S, Yang K. A combining method of quasi-cyclic LDPC codes by the chinese remainder theory[J]. IEEE Commun. Lett. , 2005,9(9) : 823-825.
  • 7Fujisawa M,Sakata S. A class of quasi-cyclic regular LD- PC codes from cyclic difference families with girth 8[A]. In Proc. IEEE Int. Symp. Information Theory[C]. 2005, 2290-2294.
  • 8LI Zong-wang, CHEN Lei, ZENG Ling-qi, et al. Efficient encoding of Quasi-cyclic low-density parity-check codes [J]. IEEE Trans. Commun. ,2006,54(1) :71-81.
  • 9Richardson T, Urbanke R. Efficient encoding of low-densi- ty parity-check codes[J]. IEEE Trans. Inf. Theory, 2001, 47(2) :638-656.
  • 10Gallager R G. Low density parity check codes[J]. IEEE Transactions on Information Theory, t962,8(3) : 21-28.

共引文献14

同被引文献28

  • 1颜森林.半导体激光器混沌双向保密通信系统理论研究[J].中国激光,2005,32(11):1503-1509. 被引量:18
  • 2Gallager R G. Principles of digital communication[M]. New York: Cambridge University Press, 2008,199-244.
  • 3Kanter I,Butkovski M, Peleg Y, et al. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography[J]. Opt. Express, 2010, 18(17) : 18292-18302.
  • 4Asmussen S,Giynn P W. Stochastic simulation,algorithms and analysis [M]. New York: Springer-Verlag, 2007, 30- 65.
  • 5Stinson D R. Cryptography,Theory and practice[M]. On- tario; CRC Press, 2005,423-452.
  • 6Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nat. Photon., 2008,2:728-732.
  • 7Holman W T,Oonnelly J A,Dowlatabadi A B,et al. An in- tegrated analog/digital random noise source [J]. IEEE Trans. Circuits Syst. I, 1997,44(6) :521-528.
  • 8Bucci M, Germani L, Luzzi R, et al. A High-speed oscilla- tor-based truly random number source for cryptographic applications on a smart card IC[J]. IEEE Trans. Com- put. , 2003,52(4) : 403-409.
  • 9Bernstein G M, Lieberman M A. Secure random number generation using chaotic circuits[J]. IEEE Trans. Circuits Syst., 1990,37(9) : 1157-1164.
  • 10Uchida A, Heil T, Liu Y, et al. High-frequency broad-band signal generation using a semiconductor laser with a cha- otic optical injection [J], IEEE J, Quantum Electron., 2003,39(11) : 1462-1467.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部