期刊文献+

双层特征优化的视觉运动目标跟踪算法 被引量:5

Visual tracking of moving object based on double layer features optimization
原文传递
导出
摘要 视觉监控中运动目标跟踪容易受到遮挡、目标快速运动与外观变化等因素的素影响,单层特征难以有效解决这些问题。为此,提出一种像素级与区域级特征组合优化的视觉跟踪算法。首先在像素级利用目标和背景区域颜色特征的后验概率对目标与背景进行初步判别;然后对候选区域进行超像素分割,并依据像素级的判断结果,在超像素区域内利用投票决策模型对目标与背景信息进行统计分析,得到精确的目标位置分布;最后结合均值漂移迭代搜索得到目标的准确位置,并利用双层判别结果对目标跟踪过程的遮挡情况进行检测,同时动态更新目标以及背景区域信息以适应目标外观与场景变化。与典型算法进行对比的实验结果表明,本文算法能够有效应对目标遮挡与快速运动等因素的影响,适用于复杂场景条件下实时的运动目标跟踪。 As single layer feature cannot efficiently reduce the disturbances of occlusion, fast motion and target appearance change on moving object tracking in video surveillance, an algorithm combining the features of pixel and region layer is proposed in this paper. At first, the object and background are coarsely discriminated by the posterior probability of the color feature in pixel level. Then,the candidate regions are segmented by the superpixel algorithm. Furthermore, accurate distribution of the object is provided by voting in the superpixel regions with the results of the pixel layer. Finally, the location of the object is obtained by mean shift iteration. And the occlusion is found with the discriminative mask of the pixel and superpixel layer. To adapt to the change of the object appearance and scene,fused with the detection of occlusion,the histogram of the target and background parts are dynamically updated. Experi mental results show that the proposed algorithm is applicable to real time moving object tracking in lowcontrast scenes and copes with the influence of object occlusion and fast motion efficiently.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第1期162-169,共8页 Journal of Optoelectronics·Laser
关键词 视觉跟踪 特征组合 超像素 投票决策 均值漂移 visual tracking feature combination superpixel voting decision mean shift
  • 相关文献

参考文献17

  • 1Smeulders A M ,CHU D M,Cucchiara R.et al.Visual tracki ng:an experimental survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7):1442-1468.
  • 2Yang H,Shao L,Zheng F,et al.Recent advances and trends in visua l tracking:A review[J].Neurocomputing,2011,74(18):3823-3831.
  • 3Collins R,Liu Y,Leordeanu M.Online selection of discrim inative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 4He S,Yang Q,Lau R W H,et al.Visual tracking via locality sen sitive histograms[A].Proc.of the 20131EEE Conference on Computer Vision and P attern Recognition[C].2013,7-2434.
  • 5Yang F,Lu H,Yang M H.Robust superpixel tracking[J].IEEE Tr ansactions on Image Processing,2014,23(4):1639-1651.
  • 6Sevilla-Lara L, Learned-Miller E.Distribution fields for tracking[A].Proce.of the 2012IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].2012,0-1917.
  • 7Fan J L, Shen X H, Wu Y.Scribble tracker:a matting-based approa ch for robust tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(8):1633-1644.
  • 8沈丁成,薛彦兵,张桦,徐光平,高赞.一种鲁棒的基于在线boosting目标跟踪算法研究[J].光电子.激光,2013,24(1):170-175. 被引量:9
  • 9李剑峰,黄增喜,刘怡光.基于光流场估计的自适应Mean-Shift目标跟踪算法[J].光电子.激光,2012,23(10):1996-2002. 被引量:15
  • 10Levinshtein A,Stere A,Kutulakos K N,et al.Turbopixels:fast superpixels using geometric flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009, 31(12):2290-2297.

二级参考文献30

  • 1PengNingsong,YangJie,LiuErqi.Model update mechanism for mean-shift tracking[J].Journal of Systems Engineering and Electronics,2005,16(1):52-57. 被引量:3
  • 2朱一玮,徐畅,王应白,包春海,王凤儒.基于色差分析的鼓膜穿孔图像边缘跟踪算法[J].计算机应用与软件,2007,24(4):56-57. 被引量:3
  • 3Fukunaga Keinosuke, Hostetler Larry D. The estimation of the gradient of a density function,with applications in pat- tern recognition [J]. IEEE Transactions on Information Theory,1975,21(1) :32-40.
  • 4Cheng Y Z. Mean-Shift, mode seeking,and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1995,17(8) ,790-799.
  • 5Comaniciu Dorin, Ramesh Visvanathan, Meer Peter. Ker- nel-based object tracking[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence,2003,25(5) : 564- 577.
  • 6Collins Robert T. Mean shift blob tracking through scale space[A]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR03)[C]. 2003,2 : 234-240.
  • 7Hu Bo, CHEN Ken, XU Jian-yu, et al. Video object tracking based on Mean-Shift with self-adaptability search window and Kalman prediction[J]. Journal of Optoelectronics · Laser,2009,20(ll) :1517-1522.
  • 8Bradski Gary, Kaebler Adrian. Learning OpenOV[M]. Se- bastopol: O'Reilly Media,lnc,, 2008,322-337.
  • 9Douglas DeOarlo, Dimitris Metaxas. Optical flow constr- aints on deformable models with applications to face tracking [J]. International Journal of Computer Vision, 2000,38(2) : 99-127.
  • 10Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques[J]. International Journal on Com- puter Vision,1994(12) :43-77.

共引文献21

同被引文献60

  • 1ZHANG Kai-hua, ZHANG Lei, YANG Ming-Hsuan.Fast compress ive tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2014,36(10):2002-2015.
  • 2LU Zhang,Laurens van der Maaten.Structure Preserving Object Tra cking[C].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].2013,8-1845.
  • 3Ulker Y, Gunsel B.Multiple model target tracking with variable rate particle filters[J].Digital Signal Processing,2012,(22):417-429.
  • 4Rui T,Zhang Q,Zhou Y,et al.Object tracking using particl e filter in the wavelet subspace[J].Neurocomputing,2013,(119):125-130.
  • 5Das S, Kale A, Vaswani N.Particle filter with a mode tracker for visual tracking across illumination changes[J].IEEE Trans.Image Process,2012,21(4):2340-2346.
  • 6Comaniciu D, Ramesh V, Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2003,25(5):564-577.
  • 7Leichter I.Mean shift trackers with cross-bin metrics[J].IEE E Transactions on Pattern Analysis and Machine Intelligence (PAMI),2012,34(4):695-706.
  • 8Li S,Wu O,Zhu C,et al.Visual object tracking using spat ial Context Information and Global tracking skills[J].Computer Vision and Imag e Understanding,2014,(125):1-15.
  • 9Yao A,Lin X,Wang G,et al.A compact associat ion of particle filtering and kernel based object tracking[J].Pattern Recognition,2012,(45):2584-2597.
  • 10Zulfiqar K H,Gu Irene Y H,Andrew G B.Robust visu al object tracking using multi-mode anisotropic mean shift and particle filters [J].IEEE Transactions on Circuits and Systems for Video Techno logy(CSVT),2011,21(1):74-87.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部