期刊文献+

小额索赔情形下现代风险模型的破产概率上界 被引量:1

Upper bound of ruin probability for modern risk model with small claim condition
下载PDF
导出
摘要 比较了经典风险模型(即Cramér-Lundberg模型)与现代风险模型,在小额索赔条件下,利用离散嵌入技术、随机游动方法和鞅方法获得了现代风险模型破产概率的指数型上界,并使用MATLAB数值模拟验证了结论的有效性.本文结果可为现实中保险公司的风险控制与初始保证金界定提供理论依据. This paper compares the classical Cram&-Lundberg Model with the modem risk model. Under the small claim condition, it derives an exponential upper bound of ultimate ruin probability for the modem risk model by a comprehensive application of embedding technology of stochastic processes, random walks method and martingale approach. A MATLAB numerical simulation is also provided to show the effectiveness of our result. This work provides a theoretical basis for risk controlling as well as initial capital rating for the realistic insurance companies.
出处 《系统工程学报》 CSCD 北大核心 2015年第1期86-93,共8页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71171103)
关键词 现代风险模型 破产概率 指数上界 小额索赔 modem risk model ruin probability exponential upper bound small claim condition
  • 相关文献

参考文献28

  • 1Crame H. On the Mathematical Theory of Risk[M]. Skandia Jubilee Volume. Stockhole. 1930.
  • 2Feller W. An Introduction to Probability Theory and Its Applications[M]. 2nd Editon. New York: Wiley, 1971.
  • 3Gerber H U. An Introduction to Mathematical Risk Theory[M]. S. S. Huebner Foundation for Insurance Education. Philadelphia: University of Pennsylvania, 1979.
  • 4Embrechts P, Klfippelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance[M]. Berlin: Springer, 1997.
  • 5Rolski T, Schmidli H, Schmidt V, Teugels J. Stochastic Processes for Insurance and Finance[M]. New York: Wiley & Sons, 1999.
  • 6Grandell J. Aspects of Risk Theory[M]. Berlin: Springer, 1991.
  • 7Goldie C M, Kliippelberg C. Subexponential Distributions[M]. Boston: Birkhauser, 1998.
  • 8Asmussen S. Risk theory in a Markovian environment[J]. Scandinavian Actuarial Journal, 1989(2): 69-100.
  • 9Asmussen S. Subexponential asymptoties for stochastic processes: Extremal behaviour, stationary distributions and first passage probabilities[J]. Annals of Applied Probability, 1998, 8(2): 354-374.
  • 10Kaas R, Goovaerts M, Dhaene J, et al. Modem Actuarial Risk Theory[M]. Dordrecht: Kluwer Academic Publishers, 2001.

二级参考文献78

共引文献11

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部