期刊文献+

考虑转捩的气冷涡轮气热和热弹耦合计算

Conjugate heat transfer and thermal-elastic coupling simulation of air-cooled turbine by taking account of transition flows
下载PDF
导出
摘要 基于非结构化网格与Gama-Theta转捩模型,将全三维NS方程组与热传导方程进行耦合求解,采用直接耦合以及LUSGS隐式求解方法,开发了气热耦合求解系统.采用能保证通量守恒的面积加权类的插值方式,保证精度,实现交界面处温度的准确传递.对MARKII叶片5411工况进行气热耦合数值模拟,并与实验结果进行了对比验证.开发了基于二次单元的热弹耦合求解器,通过导入气热耦合计算的边界温度实现对位移和热应力的有限元求解.计算结果表明:采用转捩模型后计算的涡黏系数在压力面的大部分和吸力面转捩点之前的区域与真实流动吻合更好,由于涡黏系数主要通过影响温度扩散项系数影响边界层的传热,因此在该区域计算的温度与实验值误差更小,热传导计算的精度更高,同时静压的计算结果与实验值吻合较好;得到的MARKII叶片位移和热应力分布趋势比较合理,采用Gama-Theta转捩模型在提高热传导计算精度的同时,能够获得更加合理的热弹耦合计算结果. The 3D NS equation solver was coupled with the heat conduction solver based on unstructured meshes and Ganla-Theta transition model, the direct-coupled method and LUSGS implicit method were adopted, and the conjugate heat transfer (CHT) simulation platform was established. The temperature was transmitted between interfaces by the area-weighted interpolation method to ensure the flux conservation and accuracy. The CHT numerical results were compared with experimental data of the 5411 experimental condition of MARKII blade. The thermal-elastic coupling solver based on second unit was developed, and was compared with analytic solutions of the hollow cylinder. The boundary temperature calculated by CHT simulation was transmitted into the finite element solver to calculate the displacement and thermal stress. It is indicated from the result of CHT simulation that the eddy viscosity calculated in the most of pressure surface and the area before transition of the suction surface is better agreement with the real flow. Because the eddy viscosity has a great influence on heat transfer simulations by influencing the temperature diffusion coefficient, the accuracy of heat transfer calculations is higher, and the result of static pressure simulations of Gama-Theta and SST is in good agreement with experimental results. The thermal- elastic coupling simulation results show that the distribution trend of the thermal stress and displacement of MARKII blade is reasonable. The Gama-Theta model affects the accuracy of the thermal-elastic coupling simulation indirectly by affecting the CHT simulation, and makes the calculated thermal stress more reasonable.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第1期54-60,共7页 Journal of Harbin Institute of Technology
基金 高等学校博士学科点专项科研基金(20132302110049)
关键词 直接耦合 气冷涡轮 气热耦合 转捩 热弹耦合 热应力 direct-coupled method air-cooled turbine conjugate heat transfer transition thermal-elasticcoupling thermal stress
  • 相关文献

参考文献20

  • 1BOHN D, TUMMERS C. Numerical 3-D Conjugate flow and heat transfer investigation of a transonic convection- cooled thermal Barrier coated turbine guide wine with reduced cooling fluid mass flow [ C ]//Proeeedings of ASME Turbo Expo 2003. Atlanta: ASME, 2003: 1-8.
  • 2KUSTERER K, BOHN D, SUGIMOTO T, et al. Conjugate calculations for a film-cooled blade under different operating conditions [C]//Proceedings of ASME Turbo Expo 2004. New York: ASME, 2004: 1- 10.
  • 3KULASEKHARAN K, PRASAD B. Conjugate heat transfer analysis in the trailing region of a gas turbine vane [J]. Heat Transfer Engineering, 2010, 31 (6) : 468-484.
  • 4XIE G A, SUNDEN B. Conjugate analysis of heat transfer enhancement of an internal blade tip-wall with pin-fin arrays [J]. Journal of Enhanced Heat Transfer, 2011, 18(2): 149-165.
  • 5董平,王强,郭兆元,黄洪雁,冯国泰.Conjugate Calculation of Gas Turbine Vanes Cooled with Leading Edge Films[J].Chinese Journal of Aeronautics,2009,22(2):145-152. 被引量:2
  • 6SILIETI M, KASSAB A, DIVO E. Film cooling effectiveness: comparison of adiabatic and conjugate heat transfer CFD models [J]. International Journal of Thermal Sciences, 2009, 48(12) : 2237-2248.
  • 7王强,郭兆元,周驰,颜培刚,冯国泰,王仲奇.考虑转捩的跨声速气冷涡轮叶片气热耦合计算[J].航空动力学报,2009,24(12):2703-2710. 被引量:3
  • 8曾军,卿雄杰.涡轮叶栅外换热系数计算[J].航空动力学报,2008,23(7):1198-1204. 被引量:13
  • 9MAZUR Z, ROSSETrE A H, ILLESCAS R G, et al. Analysis of conjugate heat transfer of a gas turbine first stage nozzle [C]//Proceedings of ASME Turbo Expo 2005. Nevada: ASME, 2005: 1-8.
  • 10AMEZCUA A C, CZERWIEC Z M, MUNOZ A G, et al. Thermomechanical transient analysis and conceptual optimization of a first stage bucket [J]. Journal of Turbomachine, 2011, 133(1) : 011031.

二级参考文献59

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部