微波、毫米波GaN HEMT与MMIC的新进展(续)
被引量:3
New Progress of the Microwave and Millimeter Wave GaN HEMT and MMIC(Continued)
摘要
3 MMIC技术在芯片上由GaN HEMT有源器件和无源元件(如MIM电容、薄膜电阻和衬底上的通孔等)所组成的微波单片集成电路(MMIC)和GaN HEMT分立晶体管几乎同步发展,MMIC技术的发展使GaN HEMT器件的电路应用能减少体积和质量,适应高频率的需求和批量生产。目前4英寸(1英寸=2.54 cm)圆片级GaN MMIC加工线已经成熟,
出处
《半导体技术》
CAS
CSCD
北大核心
2015年第2期81-88,共8页
Semiconductor Technology
参考文献56
-
1WU Y F,MOORE M,SAXLER A,et al.40 W/mm double field-plated Ga N HEMTs[C]∥Proceedings of the64thDevice Research Conference.Pennsylvania State,USA,2006:151-152.
-
2MICOVIC M,KURDOGHLIAN A,HASHIMOTO P,et al.Ga N HFET for W-band power applications[C]∥Proceedings of IEEE International Electron Devices Meeting.San Francisco,USA,2006:1-3.
-
3YUE Y Z,HU Z Y,GUO J,et al.In Al N/Al N/Ga N HEMTs with regrown Ohmic contacts and fTof 370 GHz[J].IEEE Electron Device Letters,2012,33(7):988-990.
-
4SHINOHARA K,REGAN D,CORRION A,et al.Self-aligned-gate Ga N-HEMTs with heavily-doped n+-Ga N Ohmic contacts to 2DEG[C]∥Proceedings of IEEE International Electron Devices.San Francisco,USA,2012:617-620.
-
5TASKER P J.Practical Waveform Engineering[J].IEEE Microwave Magazine,2009(9):65-76.
-
6TANANY A A,SAYED A,BOECK G.A 2.14 GHz50 Watt 60%power added efficiency Ga N current mode class D power amplifier[C]∥Proceedings of IEEE the 38th European Microwave Conference.Amsterdam,Netherlands,2008:432-435.
-
7LIN S,FATHY A E.A 20 W Ga N HEMT VHF/UHF class-D power amplifier[C]∥Proceedings of IEEE Annual Wireless and Microwave Technology Conference.Clearwater,USA,2011,5872897:1-4.
-
8WENTZEL A,CHEVTCHENKO S,KURPAS P,et al.A dual-band voltage-model class-D PA for 0.8/1.8 GHz applications[C]∥Proceedings of IEEE MTT-S.Seattle,USA,2013,6697417:1-4.
-
9MOTOIL K,WENTZE A,TANIOL M,et al.Digital doherty transmitter with envelopeΔ∑modulated class-D Ga N power amplifier for 800 MHz band[C]∥Proceedings of IEEE MTT-S.Tampa,USA,2014,6848280:1-4.
-
10SHI K,CALVILLO-CORTES D A,de VREEDE L C N.A compact 65 W 1.7-2.3 GHz class-E Ga N power amplifier for base stations[C]∥Proceedings of IEEE the 41stEuropean Microwave Conference.Manchester,UK,2011:1103-1106.
同被引文献27
-
1赵正平.九十年代GaAs微电子的发展[J].半导体技术,1995,11(4):11-16. 被引量:1
-
2周卫,刘道广,严利人.SiGe HBT的发展及其在微波/射频通讯中的应用[J].微电子学,2006,36(5):552-558. 被引量:5
-
3WU Yifeng, PARIKH P.High-power GaN HEMTs battle for vacuum-tube territory, http://www.com- poundsemiconductor.net/ csc/ f eatures-details.php? cat= features&-id-24129&key= GaN&type= f, Feb 07,2006.
-
4CHATTOPADHYAY M K, TOKEKAR S. Thermal model for dc characteristics of algan/gan hemts inclu- ding self-heating effect and non-linear polarization[J]. Microelectronics Journal, 2008, 39:1181-1188.
-
5VITANOV S,PALANKOVSKI V,MAROLDT S,et al.High-temperature modeling of AlGaN/GaN HEMTs[J].Solid-State Electronics,2010,54:1105-1112.
-
6SADI T, KELSALL R W, PILGRIM N J.Electro- thermal Monte Carlo simulation of submicrometer Si/ SiGe MODFETs[J].IEEE Trans.Electron Devices, 2007, 54:332-339.
-
7KUZMIK J,JAVORKA P, ALAM A, et al.Investi- gation of self-heating effects in AlGaN-GaN HEMTs[C].2001 International Symposium on Electron De- vices for Microwave and Optoelectronic Applications, New Jersey, 2001, 21-26.
-
8MENOZZI R,MANA-membreno G A, NENER B D, et al.Temperature*Dependent Characterization of Al- GaN/GaN HEMTs: Thermal and Source/Drain Re- sistances[J].IEEE Transactions on Device and Mate- rials Reliability, 2008,8(2):255-264.
-
9SIMMS R J T,POMEROY J W,UREN M J,et al. Channel Temperature Determination in High-Power AlGaN/GaN HFETs Using Electrical Methods and Raman Spectroscopy[J].IEEE Transaction on Elec- tron Devices, 2008,55(2):478-82.
-
10XUDONG T,BONNER R,DESAI T,et al.A 2-D Numerical study of Mocroscale Phase Change Material Thermal Storage for GaN Transistor Thermal Manage- ment[C], 27th IEEE SEMI-THERM Symposium, 2011:27-3.
引证文献3
-
1崔虹云,吴云飞,司有宝,候宪春,张运香,李培瑶,柳涛.GaN HEMT器件封装热特性仿真分析[J].黑龙江工程学院学报,2016,30(2):38-41. 被引量:4
-
2孔欣,陈勇波,董若岩,刘安,汪昌思.GaN HEMT栅工艺优化及性能提升[J].太赫兹科学与电子信息学报,2020,18(2):318-324. 被引量:1
-
3周德金,黄伟,宁仁霞.微波固态器件与单片微波集成电路技术的新发展[J].电子与封装,2021,21(2):47-57. 被引量:8
二级引证文献13
-
1张漫,吴云飞,崔永良,赖署晨.新型非对称Doherty功率放大器设计[J].黑龙江工程学院学报,2018,32(5):43-46. 被引量:1
-
2张漫,吴云飞,韩海生,赖署晨,崔永良.双频段Gysel功分器设计[J].黑龙江工程学院学报,2019,33(1):47-49.
-
3裴魏魏,韩海生,吴云飞,魏桂丹.基于实频技术的1.3~2.4 GHz宽带功率放大器的研究[J].黑龙江工程学院学报,2019,33(3):50-53.
-
4许莫琪,董艳红,胡文慧,吴云飞.使用DGS结构的宽带Wilkinson功分器设计[J].黑龙江工程学院学报,2020,34(2):18-20.
-
5陈仲谋,张博.基于InGaP/GaAs HBT工艺超宽带高线性度单片放大器[J].电子元件与材料,2022,41(1):83-88. 被引量:4
-
6许春良,李明,王雨桐,魏洪涛.基于GaN HEMT工艺的W波段低噪声放大器MMIC[J].半导体技术,2022,47(3):237-242.
-
7丁海.一种新型滤波器耦合板的设计方法[J].通信电源技术,2022,39(17):39-42.
-
8焦凌彬,姚凤薇.基于GaAs HBT有源自适应偏置的高线性度功率放大器设计[J].电子元件与材料,2022,41(11):1202-1208. 被引量:1
-
9周昊,颜汇锃,施梦侨,程凯.毫米波CQFN外壳地孔设计与优化[J].电子技术应用,2023,49(2):111-114. 被引量:4
-
10樊元东,毛开礼,戴鑫,魏汝省,李天,李斌.6英寸高纯半绝缘4H-SiC单晶电阻率均匀性[J].电子工艺技术,2023,44(3):42-46. 被引量:1
-
1王正华.“中芯国际”的发展道路——“中芯国际的发展模式应该是我国集成电路企业发展的样板。”[J].中国集成电路,2004,13(12):77-81.
-
2肖志强,陶建中,徐征,梁斌.中小批量ASIC加工线提高成品率的研究[J].微电子技术,1997,25(5):29-33.
-
3鲁高莲.MMIC技术在卫星有效载荷上的应用[J].半导体技术,1999,24(1):10-13. 被引量:1
-
4张汉三.MMIC Foundry工艺的进展[J].半导体情报,1993,30(3):30-36.
-
5王正华.日本探索微型化晶圆加工线模式[J].中国集成电路,2002,0(9):1-5.
-
6AWM6268:4G功率放大器[J].世界电子元器件,2012(1):30-30.
-
7崔敏,张娟.某C波段收发子阵系统设计[J].火控雷达技术,2014,43(2):72-76. 被引量:1
-
8黄廷荣.多值调制数字微波通信系统中的MMIC技术[J].半导体杂志,1995,20(1):15-21.
-
9张汉三.MMIC工业开发和标准工艺加工线(Foundry)[J].半导体情报,1993,30(1):35-43.
-
10刘云刚,陈依军,全金海.超低附加相移0.5GHz~18GHz六位数控衰减芯片设计[J].电子信息对抗技术,2013,28(2):72-76. 被引量:4