期刊文献+

基于局部邻域像素的快速时空特征点检测方法 被引量:1

Fast Spatial-Temporal Feature Point Detection Based on Local Neighbor Pixels
下载PDF
导出
摘要 针对时空特征点检测算法计算效率较低和特征点冗余度较大的问题,提出一种基于邻域像素的快速时空特征点检测方法.通过寻找三维时空中局部邻域内像素值差异较大的点以快速定位时空特征点,然后采用非极大值抑制的方法剔除其中的冗余点,将筛选后的时空特征点用于人体行为识别.此外,还根据二项分布原理研究特征点检测中邻域像素分割阈值的取值范围及其它检测参数优化问题.实验结果表明该算法具有较高的检测速度,既能稳定提取足够数量的特征点又能降低其冗余度,在行为识别中也保持较高的准确率. To solve the problem of low computational efficiency and many redundant feature points in feature point detection algorithm, a fast spatial-temporal feature point detection algorithm based on local neighbor pixels is proposed. The spatial-temporal feature points are located quickly by finding the points with great difference in pixel value in 3D spatial-temporal local neighborhood. Then the redundant feature points are removed with the 3D non-maxima suppression method, and the screened feature points are applied to human action recognition. In addition, the range of pixel segmentation threshold in local area and other detection problems of parameter optimization are analyzed according to binomial probability distribution principle. The experimental results show that the proposed algorithm not only improves the speed of feature point detection but also reliably detects enough amounts of feature points with the least redundancy, which leads to the high accuracy in human action recognition.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第1期74-79,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60972136 61171142) 广东省科技计划项目(No.2010B010600014 2011A010801005)资助
关键词 时空特征点 非极大值抑制 三维快速特征点 局部邻域 Spatial-Temporal Feature Point, Non-maxima Suppression, 3D Fast Feature Point, Local Neighborhood
  • 相关文献

参考文献13

  • 1Harris C, Stephens M. A Combined Corner and Edge Detector// Proc of the 4th Alvey Vision Conference. Manchester, UK, 1988 : 147-151.
  • 2Lowe D G. Distinctive Image Features from Scale-lnvariant Key- points. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 3Laptev I, Lindeberg T. Space-Time Interest Points// Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, I- 432-439.
  • 4Doll6r P, Rabaud V, Cottrell G, et al. Behavior Recognition via Sparse Spatio-Temporal Features // Proe of the 2nd Joint IEEE International Workshop on Visual Surveillance and PerformanceEvaluation of Tracking and Surveillance. Beijing, China, 2005: 65 -72.
  • 5Rosten E, Drummond T. Fusing Points and Lines for High Perform- ance Tracking//Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, II: 1508-1515.
  • 6Koelstra S, Patras I. The FAST-3D Spatio-Temporal Interest Region Detector//Proc of the 10th Workshop on Image Analysis for Multi- media Interactive Services. London, UK, 2009 : 242-245.
  • 7Yu T H, Kim T K, Cipolla R. Real-Time Action Recognition by Spatiotemporal Semantic and Structural Forests//Proc of the British Machine Vision Conference. Aberystwyth, UK, 2010. DOI: 10. 5244/C. 42.52.
  • 8周龙萍.基于改进的Harris算法检测角点[J].计算机技术与发展,2013,23(2):11-14. 被引量:18
  • 9王静,王海亮,向茂生,韦立登,刘忠胜.基于非极大值抑制的圆目标亚像素中心定位[J].仪器仪表学报,2012,33(7):1460-1468. 被引量:54
  • 10Gorelick L, Blank M, Shechtman E, et al. Actions as Space-Time Shapes. IEEE Trans of Pattern Analysis and Machine Intelligence, 2007, 29( 12): 2247-2253.

二级参考文献30

共引文献70

同被引文献25

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部