摘要
针对传统传播模型更适用于均匀网络而无法有效应用于现实非均匀无标度社交网络的问题,提出一种基于用户局域信息的社交网络信息传播模型。模型中考虑了无标度网络中用户间拓扑特征差异和用户影响力不同对信息传播的影响,根据节点周边邻居节点的感染情况和权威性计算感染概率,模拟现实社交网络中的信息传播情况。通过在采集的真实微博网络数据上进行仿真实验,结果表明该模型较传统的SIR模型更能体现社交网络中信息传播的快速性与范围的广泛性;同时,通过调整模型中的相关参数,验证了相关管控措施对传播效果的影响。
The traditional information propagation model is more suitable for homogeneous network, and cannot be effectively applied to the non-homogeneous scale-free Social Network (SN). To solve this problem, an information propagation model based on local information was proposed. Topological characteristic difference between users and different effect on information propagation of user influence were considered in the model, and the probability of infection was calculated according to the neighbor nodes' infection and authority. Thus it could simulate the information propagation on real social network. By taking simulation experiments on Sina microblog networks, it shows that the proposed model can reflect the propagation scope and rapidity better than the traditional Susceptible-lnfective-Recovered (SIR) model. By adjusting the parameters of the proposed model, it can verify the impact of control measures to the propagation results.
出处
《计算机应用》
CSCD
北大核心
2015年第2期322-325,331,共5页
journal of Computer Applications
基金
国家科技重大专项(2013ZX03006002)
关键词
社交网络
信息传播
复杂网络
传染病模型
用户影响力
Social Network (SN)
information propagation
complex network
epidemic model
user influence