期刊文献+

基于局域信息的社交网络信息传播模型 被引量:11

Information propagation model for social network based on local information
下载PDF
导出
摘要 针对传统传播模型更适用于均匀网络而无法有效应用于现实非均匀无标度社交网络的问题,提出一种基于用户局域信息的社交网络信息传播模型。模型中考虑了无标度网络中用户间拓扑特征差异和用户影响力不同对信息传播的影响,根据节点周边邻居节点的感染情况和权威性计算感染概率,模拟现实社交网络中的信息传播情况。通过在采集的真实微博网络数据上进行仿真实验,结果表明该模型较传统的SIR模型更能体现社交网络中信息传播的快速性与范围的广泛性;同时,通过调整模型中的相关参数,验证了相关管控措施对传播效果的影响。 The traditional information propagation model is more suitable for homogeneous network, and cannot be effectively applied to the non-homogeneous scale-free Social Network (SN). To solve this problem, an information propagation model based on local information was proposed. Topological characteristic difference between users and different effect on information propagation of user influence were considered in the model, and the probability of infection was calculated according to the neighbor nodes' infection and authority. Thus it could simulate the information propagation on real social network. By taking simulation experiments on Sina microblog networks, it shows that the proposed model can reflect the propagation scope and rapidity better than the traditional Susceptible-lnfective-Recovered (SIR) model. By adjusting the parameters of the proposed model, it can verify the impact of control measures to the propagation results.
出处 《计算机应用》 CSCD 北大核心 2015年第2期322-325,331,共5页 journal of Computer Applications
基金 国家科技重大专项(2013ZX03006002)
关键词 社交网络 信息传播 复杂网络 传染病模型 用户影响力 Social Network (SN) information propagation complex network epidemic model user influence
  • 相关文献

参考文献15

  • 1Wikipedia [ EB/OL]. [2014-06-23]. http://en, wikipedia. Org// wiki.
  • 2WATYS D J, STROGATZ S H. Collective dynamics of' small-world' networks [J]. Nature, 1998, 393(6684): 440-442.
  • 3BARABASI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks [ J]. Physiea A: Statistical Mechanics and Its Applications, 1999, 272(1) : 173 - 187.
  • 4张彦超,刘云,张海峰,程辉,熊菲.基于在线社交网络的信息传播模型[J].物理学报,2011,60(5):60-66. 被引量:154
  • 5王辉,韩江洪,邓林,程克勤.基于移动社交网络的谣言传播动力学研究[J].物理学报,2013,62(11):96-107. 被引量:80
  • 6ZHENG M, LYU L, ZHAO M. Spreading in online social networks: the role of social reinforcement [ J]. Physical Review E, 2013, 88 (1): 012818.
  • 7BAKSHY E, ROSENN I, MARLOW C, et al. The role of social networks in information diffusion [ C]// WWW 2012: Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012:519-528.
  • 8蒙在桥,傅秀芬.基于在线社交网络的动态消息传播模型[J].计算机应用,2014,34(7):1960-1963. 被引量:16
  • 9李栋,徐志明,李生,刘挺,王秀文.在线社会网络中信息扩散[J].计算机学报,2014,37(1):189-206. 被引量:63
  • 10YANG Z, GUO J, CAI K, et al. Understanding retweeting behav- iors in social networks [ C]//CIKM 2010: Proceedings of the 19th ACM International Conference on Information and Knowledge Man- agement. New York: ACM, 2010: 1633-1636.

二级参考文献131

  • 1周拉弟.论突发事件当中的新媒体与新闻真实性[J].东南传播,2008(12):62-64. 被引量:8
  • 2谣言来袭你恐慌了嘛[EB/OL].[2011-03-28].http://sc.sirla.com.cn/z/hfs/.
  • 3Wikipedia,http://en.wikipedia.Org//wiki.
  • 4Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501 (in Chinese).
  • 5Wang Y X, Qiao X Q, Li X F, Meng L M 2010 Chinese Journal of Computers 33 2126 (in Chinese).
  • 6Adams B, Phung D, Venkatesh S 2008 ACM Transactionson Mutimedia Computing Comunications and.
  • 7Ugander J, Karrer B, Backstrom L, Marlow C 2011 available: https://www.facebook.com, Novemb.
  • 8Watts D J, Strogatz S H 1998 Nature 393.
  • 9Barabasi A L, Albert R 1999 Science 286 509.
  • 10Centola D 2010 Science 329 1194.

共引文献347

同被引文献88

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部