期刊文献+

基于结构粒化的数据合并方法 被引量:3

Data combination method based on structure's granulation
下载PDF
导出
摘要 为了研究实际中的数据合并问题,对各类数据信息给予了整体表示,使数据集、关联关系和划分共同组成了关联组合结构,为数据合并作了结构化的准备。进而,通过对关联关系的粒化处理,实现了关联组合结构到粒化结构的转换,促成了相关数据的按组合并。由于关联组合结构和粒化结构均与关联矩阵相互对应,所以基于结构转换的数据合并又可通过矩阵变换计算完成。因此所展开的讨论既包含了数据合并的理论分析,也给出了数据合并可程序化的数据形式,形成了以结构粒化为理论支撑、以矩阵变换为算法构成的数据合并方法。基于该方法的程序设计使数据合并实现了程序化,并保证了运行的线性复杂度。实验表明,理论支撑下的程序处理具有快速及准确的运行特性。 In order to study the problem about data combinations occurring in real life, different kinds of data information were combined together, leading to a structure called associated-combinatorial structure. Actually, the structure was constituted by a data set, an associated relation and a partition. The aim was to use the structure to set up a method of data combination. To this end, the associated-combinatorial structure was transformed into a granulation structure by granulating the associated relation. In this process, data combinations were completed in accordance with the data classifications. Moreover, because an associated-combinatorial structure or a granulation structure could be represented by the associated matrix, the transformation from a structure to another structure was characterized by algebraic calculations determined by matrix transformations. Therefore, the research not only involved theoretical analysis for the data combination, but also established the data processing method connected with matrix transformations. Accordingly, a computer program with linear complexity was formulated according to the data combinations method. The experimental result proves that the program is accurate and fast.
出处 《计算机应用》 CSCD 北大核心 2015年第2期358-363,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1204606)
关键词 数据合并 关联组合结构 粒化结构 关联矩阵 粒化矩阵 data combination associated-combinatorial structure granulation structure associated matrix granulationmatrix
  • 相关文献

参考文献15

  • 1PEDRYCZ W. Granular computing: analysis and design of intelli- gent systems [ M]. Boca Raton: CRC Press. 2013:24-50.
  • 2SKOWRON A, STEPANIUK J, SWINIARSKI R. Modeling rough granular computing based on approximation spaces [ J]. Information Sciences, 2012, 184(1) : 20 -43.
  • 3MCALLISTER R A, ANGRYK R A reduction in text classification [ J] Abstracting for dimensionality International Journal of Intelli- gent Systems, 2013, 28(2) : 115 - 138.
  • 4FAN T. Rough set analysis of relational structures [ J]. Information Sciences, 2013, 221:230-244.
  • 5YAN L, YAN S. Granular reasoning and decision system's decompo- sition [J]. Journal of Software, 2012, 7(3): 683-690.
  • 6HONKO P. Association discovery from relational data via granular computing [J]. Information Sciences, 2013, 234:136 -149.
  • 7闫林,宋金朋.数据集的粒化树及其建模应用[J].计算机科学,2014,41(3):258-262. 被引量:3
  • 8PAWLAK Z. Rough set - theoretical aspects of reasoning about da- ta [M]. Norwell: Kluwer Academic Publishers, 1992:157-201.
  • 9WANG S, ZHU Q, ZHU W, et al. Quantitative analysis for cover- ing-based rough sets through the upper approximation number [ J]. Information Sciences, 2013, 220:483-491.
  • 10SHE Y. On the rough consistency measures of logic theories and ap- proximate reasoning in rough logic [ J]. International Journal of Ap- proximate Reasoning, 2014, 55(1) : 486 -499.

二级参考文献4

共引文献2

同被引文献15

  • 1刘云生,李博.时态数据库中二维数据的合并[J].计算机工程与科学,2006,28(11):76-78. 被引量:1
  • 2Pawlak Z. Granularity of knowledge, indiscernibility and rough sets [C]. Proceedings of 1998 IEEE International Conference on Fuzzy Systems, 1998:106-110.
  • 3Zadeh L A. Fuzzy Logic = Computing with Words [J]. IEEE Transactions on Fuzzy Systems, 1996(4): 103-111.
  • 4Zadeh L A. Towards a theory of fuzzy information granulationand its centrality in human reasoning and fuzzy logic [J]. Fuzzy Sets and Systems, 1997(19): 111-127.
  • 5Yao Y Y. A Partition Model of Granular Computing[J]. Transac- tions on Rough Sets, Lecture Notes in Computer Science, 2004, Volume 3100: 232-253.
  • 6Ma J M, Zhang W X, Leung Y, Song X X. Granular computing and dual Galois connection [J]. Information Sciences, 2007, 177 (23): 5365-5377.
  • 7Ma J M, Zhang W X, Li T J. A Covering Model of Granular Computing [C]. Proceeding of the Fourth International Confer- ence on Machine Learning and Cybernetics. Guangzhou, China, 2005: 1625-1630.
  • 8折延宏,王国俊.粒计算的一种覆盖模型[J].软件学报,2010,21(11):2782-2789. 被引量:11
  • 9张钹,张铃.粒计算未来发展方向探讨[J].重庆邮电大学学报(自然科学版),2010,22(5):538-540. 被引量:22
  • 10苗夺谦,徐菲菲,姚一豫,魏莱.粒计算的集合论描述[J].计算机学报,2012,35(2):351-363. 被引量:54

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部