期刊文献+

基于自适应机制的多宇宙并行量子衍生进化算法 被引量:6

Multi-universe parallel quantum-inspired evolutionary algorithm based on adaptive mechanism
下载PDF
导出
摘要 进化参量的选取对量子衍生进化算法(QEA)的优化性能有极大的影响,传统QEA在选择进化参量时并未考虑种群中个体间的差异,种群中所有个体采用相同的进化参量完成更新,导致算法在解决组合优化问题中存在收敛速度慢、容易陷入局部最优解等问题。针对这一问题,采用自适应机制调整QEA的旋转角步长和量子变异概率,算法中任意一代的任一个体的进化参量均由该个体自身适应度确定,从而保证尽可能多的进化个体能够朝着最优解方向不断靠近。此外,由于自适应量子进化算法需要评估个体的适应度,导致运算时间较长,针对这一问题则采用多宇宙机制将算法分布于多个宇宙中并行实现,从而提高算法的执行效率。通过搜索多峰函数最优解和求解背包问题测试算法性能,结果表明,与传统QEA相比,所提出算法在收敛速度、搜索全局最优解及执行速度方面具有较好的表现。 The way of selecting evolutionary parameters is vital for the optimal performance of the Quantum-inspired Evolutionary Algorithm (QEA). However, in conventional QEA, all individuals employ the same evolutionary parameters to complete update without considering the individual difference of the population, thus the drawbacks including slow convergence speed and being easy to fall into local optimal solution are exposed in computing combination optimization problem. To address those problems, an adaptive evolutionary mechanism was employed to adjust the rotation angle step and the quantum mutation probability in the quantum evolutionary algorithm. In the algorithm, the evolutionary parameters in each individual and each evolution generation were determined by the individual fitness to ensure that as many evolutionary individuals as possible could evolve to the optimal solution direction. In addition, the adaptive-evolution-based evolutionary algorithm needs to evaluate the fitness of each individual, which leads to a longer operation time. To solve this problem, the proposed adaptive quantum- inspired evolutionary algorithm was parallel implemented in different universe to improve the execution efficiency. The proposed algorithms were tested by searching the optimal solutions of three multimodal functions and solving knapsack problem. The experimental results show that, compared with conventional QEA, the proposed algorithms can achieve better performances in convergence speed and searching the global optimal solution.
出处 《计算机应用》 CSCD 北大核心 2015年第2期369-373,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61473179) 山东省优秀中青年科学家科研奖励基金资助项目(BS2013DX032) 山东理工大学青年教师发展支持计划项目(2014-09)
关键词 组合优化 量子衍生进化算法 最优解 多宇宙 并行计算 combination optimization Quantum-inspired Evolutionary Algorithm (QEA) optimal solution multi- univere parallel computing
  • 相关文献

参考文献14

  • 1LU T, ZHU J. Genetic Algorithm for energy-efficient QoS multieast routing [ J]. IEEE Communications Letters, 2013, 17 (1) : 31 - 34.
  • 2JIANG Y, JIANG J, ZHANG Y. A novel fuzzy muhi-ohjeetive mod- el using adaptive genetic algorithm based on cloud theory for service restoration of shipboard power systems [ J]. IEEE Transactions on Power Systems, 2012, 27(2) : 612 -620.
  • 3KAUSHIK D, SINGH U, SINGHAL P, et al. Medical image seg- mentation using genetic algorithm [ J]. International Journal of Corn-puter Applications, 2013, 81(18) : 10 - 15.
  • 4DAVID O E, van den HERIK H J, KOPPEL M, et al. Genetic al- gorithms for evolving computer chess programs [ J]. IEEE Transac- tions on Evolutionary Computation, 2014, 18(5): 779 -789.
  • 5NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms [C]// Proceedings of the 1996 IEEE International Conference on Evolutionary Computation. Piseataway: IEEE, 1996:61-66.
  • 6邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法[J].电子学报,2007,35(10):1999-2002. 被引量:56
  • 7XING H, QU R. A non-dominated sorting genetic algorithm for bi- objective network coding based multicast muting problems [ J]. In- formation Sciences, 2013, 233:36 -53.
  • 8HO S L, YANG S, NI P, et al. A quantum-inspired evolutionary algorithm for multi-objective design [ J]. IEEE Transactions on Mag- netics, 2013, 49(5) : 1609 - 1612.
  • 9HAN K-H, KIM J-H. Quantum-inspired optimization algorithms with a new termination criterion, H gate, and two-phase scheme [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (2): 156-169.
  • 10LI B, WANG L. A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37 (3): 576-591.

二级参考文献26

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 3Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[A]. Proc of the 35th Annual Symposium on the Foundation of Computer Sciences[C]. Los Alamitos: IEEE Computer Society Press,1994.20-22.
  • 4Grover L K. A fast quantum mechanical algorithm for database search[A]. Proc of 28th Annual ACM Symposium on the Theory of Computing[C]. Philadelphia: ACM Press, 1996.212 - 221.
  • 5Narayanan A, Moore M. Quantum inspired genetic algorithms[A].Proce of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96)[C]. Nogaya: IEEE Press, 1996.41-46.
  • 6Han K-H. Genetic quantum algorithm and its application to combinatorial optimization problem[A]. IEEE Proc of the 2000 Congress on Evolutionary Computation[C]. San Diego: IEEE Press, 2000.1354-1360.
  • 7Yang Jun' an, et al. Research & realization of image separation method based on independent component analysis & genetic algorithm[A]. International Congress on Image and Graph 2002[C]. Hefei:SPIE Press,2002.575-582.
  • 8Grosso P B. Computer Simulation of Genetic Algorithm Adaptation:Parallel Subcomponent Interaction in a Multi-Locals Model[D]. The University of Michigan, 1985.
  • 9王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2001..
  • 10Gavish B, Hantler S L. An algorithm for optimal route selection in SNA networks [J]. IEEE Transaction on Commtmication, 1983,31 (10): 1154 - 116.

共引文献146

同被引文献47

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部