期刊文献+

分布式文件系统数据块聚类存储节能策略

Energy-efficient strategy of distributed file system based on data block clustering storage
下载PDF
导出
摘要 针对分布式文件系统中由于数据块随机放置而导致的服务器利用率低、能耗管理复杂的问题,建立了数据块访问特征向量模型描述用户对数据块的随机访问,运用K-means算法对数据块进行聚类计算,根据计算结果将数据节点划分为多个区域以存储不同聚类簇的数据块,在系统负载较低时进行数据块动态重配置,关闭不必要节点达到节能的目的。为使得策略适用于对能耗和资源利用率有不同要求的场景,算法中聚类簇间隔参数可灵活设置。实验通过和冷热区划分算法进行比较表明:按照聚类结果进行数据块重配置后,能耗节省效率优于冷热区划分算法,节省能耗35%~38%。 Concerning the low server utilization and complicated energy management caused by block random placement strategy in distributed file systems, the vector of the visiting feature on data block was built to depict the behavior of the random block accessing. K-means algorithm was adopted to do the clustering calculation according to the calculation result, then the datanodes were divided into multiple regions to store different cluster data blocks. The data blocks were dynamic reconfigured according to the clustering calculation results when the system load is low. The unnecessary datanodes could sleep to reduce the energy consumption. The flexible set of distance parameters between clusters made the strategy be suitable for different scenarios that has different requests for the energy consumption and utilization. Compared with hot-cold zoning strategies, the mathematical analysis and experimental results prove that the proposed method has a higher energy saving efficiency, the energy consumption reduces by 35% to 38%.
出处 《计算机应用》 CSCD 北大核心 2015年第2期378-382,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61462079 61262088 61363083) 新疆维吾尔自治区自然科学基金资助项目(2013211A011)
关键词 云计算 分布式文件系统 数据聚类 动态重配置 节能计算 cloud computing distributed file system data clustering dynamic reconfiguration energy-efficient computing
  • 相关文献

参考文献16

  • 1VOUK M A. Cloud computing - issues, research and implementa- tions [ J]. Journal of Computing and Information Technology, 2004, 16(4) : 235 - 246.
  • 2CHEMAWAT S, GOBIFF H, LEUNG S-T. The Goole file system [ C]//SOSP '03: Proceeding of 19th ACM Symposium on Operating System Principles. New York: ACM, 2003:29 -43.
  • 3BORTHAKUR D. The Hadoop distributed file system: architecture and design [ EB/OL]. (2007- 07- 01) [ 2014- 07- 14]. http://ha- doop. apache, org/commort/docs/r0.18.2/hdfs_design, pdf.
  • 4HOOPER A. Green computing [ J]. Communications of the ACM, 2008, 51(10): 11-13.
  • 5Global Action Plan. An inefficient truth [ R/OL]. [2014-04-20]. http://www, it-energy, co. uk/pdtVGAP% 20An% 201nefficient% 20Truth% 20Dec% 202007. pdf.
  • 6LEVERICH J, KOZYRAKIS C. On the energy in efficiency of Ha- doop clusters [ J]. ACM SIGOPS Operating Systems Review, 2010, 44(1):61 -65.
  • 7王政英,于炯,英昌甜,鲁亮,班爱琴.基于用户访问特征的云存储副本动态管理节能策略[J].计算机应用,2014,34(8):2256-2259. 被引量:2
  • 8MAHESHWARI N, NANDURI R, VARMA V. Dynamic energy ef- ficient data placement and cluster reconfiguration algorithm for Ma- pReduce framework [ J]. Future Generation Computer Systems, 2011, 28(1): 119-127.
  • 9LIU Q, Todman T, LUK W. Combining optimizations in automated low power design [ C]// DATE '10: Proceedings of the Conference on Design, Automation and Test in Europe. Leuven, Belgium: Eu- ropean Design and Automation Association, 2010:1791 - 1796.
  • 10林彬,李姗姗,廖湘科,孟令丙,刘晓东,黄訸.Seadown:一种异构MapReduce集群中面向SLA的能耗管理方法[J].计算机学报,2013,36(5):977-987. 被引量:13

二级参考文献74

  • 1Hoelzle U, Barroso L A. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. San Rafael, CA USA: Morgan and Claypool Publishers, 2009.
  • 2Fan X, Weber W-D, Barroso L A. Power provisioning for a warehouse-sized computer//Proceedings of the 34th Annual International Symposium on Computer Architecture. San Diego, California, USA, 2007:13-23.
  • 3Barroso L Andr6, HOlzle U. The case for energy-proportional computing. Computer, 2007, 40(12) : 33-37.
  • 4Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 2008, 51(1) : 107-113.
  • 5Meisner D, Gold B T, Wenisch T F. PowerNap: Eliminating server idle power//Proceedings of the 14th International Conference on Architectural Support for Programming Lan- guages and Operating Systems. Washington, DC, USA, 2009:205-216.
  • 6Carrera E V, Pinheiro E, Bianchini R. Conserving disk ener- gy in network servers//Proceedings of the 17th Annual Inter- national Conference on Supercomputing. San Francisco, CA, USA, 2003:86-97.
  • 7Kim H S, Shin DI, Yu Y J, Eom H, Yeom H Y. Towards energy proportional cloud for data processing frameworks// Proceedings of the 1st USENIX Comference on Sustainable Information Technology. San Jose, CA, USA, 2010: 4-4.
  • 8Leverich J, Kozyrakis C. On the energy (in)efficiency of Hadoop clusters. ACM SIGOPS Operating Systems Review, 2010, 44(1): 61-65.
  • 9Lang W, Patel J M. Energy management for MapReduce clusters. Proceedings of the VLDB Endowment, 2010, 3(1-2), 129-139.
  • 10Ghemawat S, Gobloff H, Leung S-T. The Google file sys- tem//Proceedings of the 19th ACM Symposium on Operating Systems Principles. Bolton Landing, NY, USA, 2003: 29-43.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部