期刊文献+

基于高效多示例学习的目标跟踪 被引量:8

Object tracking with efficient multiple instance learning
下载PDF
导出
摘要 基于多示例学习(MIL)的跟踪算法能在很大程度上缓解漂移问题。然而,该算法的运行效率相对较低,精度也有待提高,这是由于MIL算法采用的强分类器更新策略效率不高,以及分类器更新速度与目标外观变化速度不一致引起的。为此提出一种新的强分类器更新策略,以大幅提升MIL算法的运行效率;同时提出一种动态更新分类器学习率的机制,使更新后的分类器更符合目标的外观,提高跟踪算法的精度。通过实验将该算法和MIL算法以及基于加权多示例学习的跟踪算法(WMIL)进行对比,实验结果表明,所提出算法的运行效率和跟踪精度都是三者中最好的,在背景中没有与被跟踪目标外观相似的干扰物体存在时有较好的跟踪优势。 The method based on Multiple Instance Learning (MIL) can alleviate the drift problem to a certain extend. However, MIL method has relatively poor performance in running efficiency and accuracy, because the update strategy efficiency of the strong classifiers is low, and the update speed of the classifiers is not same with the appearance change speed of the targets. To solve this problem, a new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the tracking accuracy of the MIL method, a new dynamic mechanisim for learning rate renewal of the classifier was given to make the updated classifier would more conform to the appearance of the target. The experimental results on comparison with MIL method and the Weighted Multiple Instance Learning (WMIL) method show that, the proposed method has the best performance in running efficiency and accuracy among the three methods, and has an advantage over tracking when there is no similar interference objects to target objects in background.
作者 彭爽 彭晓明
出处 《计算机应用》 CSCD 北大核心 2015年第2期466-469,475,共5页 journal of Computer Applications
基金 中央高校基本科研业务费专项(ZYGX2011J075)
关键词 目标跟踪 多实例学习 分类器 漂移 样本集 object tracking Multiple Instance Learning (MIL) classifier drift sample set
  • 相关文献

参考文献14

  • 1蔡荣太,吴元昊,王明佳,吴庆祥.视频目标跟踪算法综述[J].电视技术,2010,34(12):135-138. 被引量:39
  • 2ROSS D A, LIM J, LIN R-S, et al. Incremental learning for robust visual tracking [ J]. International Journal of Computer Vision, 2009, 77(1/2/3) : 125 - 141.
  • 3ZHANG L, ZHANG K, YANG M. Real-time compressive tracking [ C]// ECCV 2012: Proceedings of the 12th European Conference on Computer Vision, LNCS 7574. Berlin: Springer, 2012: 866- 879.
  • 4KWON J, LEE K M. Visual tracking decomposition [ C]//CVPR 2010: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:1269-1276.
  • 5MEI X, LING H. Robust visual tracking using 11 minimization [ C]//ICCV 2009: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009:1436 - 1443.
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrap- ping binary classifiers by structural constraints [ C]// CVPR 2010: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:49-56.
  • 7ZHOU Q-H, LU H, YANG M-H. Online multiple support instance tracking [C]// FG 2011: Proceedings of the 2011 IEEE Interna- tional Conference on on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2011 : 545 - 552.
  • 8LEISTINER C, GODEC M, SAFFARI A, et al. Online multi-view forests for tracking [ C]//Proceedings of the 32nd DAGM Symposi-um on Pattern Recognition, LNCS 6376. Bedim Springer, 2010: 493 - 502.
  • 9BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8) : 1619 - 1632.
  • 10NING J, SHI W, YANG S, et al. Improved appearance updating method in multiple instance learning tracking [ J]. IET Computer Vision, 2014, 8(2) : 118 - 130.

二级参考文献41

  • 1MAGGIO E,TAJ M,CAVALLARO A.Efficient multi-target visual tracking using random finite sets[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(8):1016-1027.
  • 2XU X,LI R.Adaptive raoblackwellized particle filter and its evaluation for tracking in surveillance[J] /IEEE Transactions on Image Processing,2007,16(3):838-849.
  • 3LAO Y,ZHU J,ZHENG Y.Sequential particle generation for visual tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2009,19(9):1365-1378.
  • 4PAN P,SCHONFILD D.Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J].IEEE Transaction on Circuits and Systems for Video Technology,2008,18(9):1268-1279.
  • 5BOUAYNAYA N,SCHONFELD D.On the optimality of motionbased particle filtering[J].IEEE Transactions on Circuits and Systems for Video Technology,2009,19(7):1068-1072.
  • 6IOANNIS P,EDWIN H R.Coupled prediction classification for robust visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1553-1567.
  • 7SOTO D A,REGAZZONI M C S.Bayesian tracking for video analytics[J].IEEE Signal Processing Magazine,2010,27(5):46-55.
  • 8LEICHTER I,LINDENBAUM M,RIVLIN E.Mean Shift tracking with multiple reference color histograms[J].Computer Vision and Image Understanding,2010,114(3):400-408.
  • 9GUPTA P,VITORIA L N,LAVIOLA J J.Markefless tracking using polar correlation of camera optical flow[C] //Proc.2010 IEEE Virtual Reality Conference.Waltham,MA,UK:IEEE Press,2010:223-226.
  • 10WU Ying,FAN Jialue.Contextual flow[C] //Proc.2009 IEEE International Conference on Computer Vision,Miami,FL,USA:IEEE Press,2009:33-40.

共引文献48

同被引文献77

  • 1李文斌,刘椿年,陈嶷瑛.基于特征信息增益权重的文本分类算法[J].北京工业大学学报,2006,32(5):456-460. 被引量:19
  • 2DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [ C]//CVPR 2014: Proceed- ings of the 2014 Conference on Computer Vision and Pattern Recog- 'nition. Washington, DC: IEEE Computer Society, 2014: 1090- 1097.
  • 3HENRIQUES J F, CASEIRO R, MARTINS P. High-speed tracking with kernelized correlation filters [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583 -596.
  • 4ZHANG K, ZHANG L, LIU Q, et al. Fast visual tracking via dense spatio-temporal context learning [ C]/! ECCV 2014: Proceedings of the 13th European Conference on Computer Vision, LNCS 8693. Berlin: Springer, 2014:127-141.
  • 5ZHONG W. Robust object tracking via sparsity-based collaborative model [ C]// CVPR 2012: Proceedings of the 2012 IEEE Confer- ence on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:1838 - 1845.
  • 6ROSS D, LIM J, LIN R-S, et al. Incremental learning for robust vis- ual tracking [ J]. International Journal of Computer Vision, 2008, 77 (1/2/3) : 125 - 141.
  • 7YANG F, LU H, YANG M. Robust super-pixel tracking [ J]. IEEE Transaction on Image Processing, 2014, 23(4) : 1639 - 1651.
  • 8BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619- 1632.
  • 9YANG F, LU H, YANG M. Robust visual tracking via multiple kernel boosting with affinity constraints [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2) : 242 - 254.
  • 10ZHANG K, ZHANG L, YANG M. Real-time object tracking via online discriminative feature selection [ J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677.

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部