期刊文献+

超重力反应沉淀法制备氧化锰八面体分子筛 被引量:1

Preparation of Manganese Oxide Octahedral Molecular Sieves by High Gravity Reactive Precipitation( HGRP)
下载PDF
导出
摘要 采用氧化还原沉淀法在超重力反应器中制备出氧化锰八面体分子筛(OMS-2),考察了加入的酸量、反应器转速、反应温度对OMS-2晶型和尺寸的影响。研究结果表明,超重力反应器中,当加入硝酸浓度达到2.32mol/L,反应器转速增大到1 200 r/min时才能获得晶型良好的OMS-2产品。而且改变转速对OMS-2晶体的尺寸和形貌无明显调控作用,温度对OMS-2的晶体尺寸有明显影响。反应温度60℃比30℃对应产物沿直径的横向生长速率更快,生成纳米棒直径增大。DSC和H2-TPR分析表明,超重力反应沉淀法相比于普通回流法制备出的OMS-2产物,其在550℃以下可在不破坏晶体结构的前提下更稳定持续地释放出体相氧物种。超重力反应沉淀法以水为溶剂,为实现氧化锰八面体分子筛的规模化清洁制备做出了有益的探索。 Manganese oxide octahedral molecular sieves (OMS-2) were prepared in high gravity reactor by redox precipitation method. The effects of the amount of acid, the rotation speed of reactor and reaction temperature on the properties of OMS-2 were investigated. SEM images and XRD patterns show that the crystal structure of OMS-2 formed well when the concentration of HNO3 added was 2.32 mol/L and the rotation speed of reactor was 1 200 r/min. The size control of OMS-2 was not achieved through changing the rotation speed of reactor, and reaction temperature could significantly alter the size of crystalline materials. The lateral growth rate along the diameter of OMS-2 nanorods rose when the reaction temperature increased from 30 ℃ to 60 ℃. DSC thermogram and Ha-TPR profile indicate that, in comparison with conventional reflux method, the persistent release ability of the oxygen species of OMS-2 materials synthesized by HGRP was better at temperatures below 550 ℃ and without the destruction of crystal structure at the same time. This study provides a new green method to prepare one-dimensional OMS-2 nanorods on a larze scale.
出处 《精细化工》 EI CAS CSCD 北大核心 2015年第2期121-125,共5页 Fine Chemicals
基金 湖北省自然科学基金(2013CFB322) 湖北省教育厅青年人才项目(Q20131503) 武汉工程大学青年基金项目(10112061) 绿色化工过程教育部重点实验室开放基金项目(GCP201301)~~
关键词 超重力 氧化锰八面体 沉淀 纳米棒 尺寸控制 功能材料 high gravity manganese oxide octahedral precipitation nanorod size control functionalmaterials
  • 相关文献

参考文献12

  • 1Suib S L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials [ J ]. Acc Chem Res, 2008,41 ( 4 ) : 479 - 487.
  • 2Suib S L. Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials[ J]. J Mater Chem, 2008,18 : 1623 - 1631.
  • 3Zhang Q, Cheng X, Feng X, et al. Large-scale size-controlled synthesis of cryptomelane-type manganese oxide OMS-2 in lateral and longitudinal directions [ J]. J Mater Chem, 2011,21 ( 14 ) : 5223 - 5225.
  • 4Opembe N N, King6ndu C K,Espinal A E,et al. Microwave- assisted synthesis of manganese oxide octahedral.molecular sieve (OMS-2) nanomaterials under continuous flow conditions [ J ]. J Phys Chem C,2010,114(34) :14417 -14426.
  • 5King6ndu C K, Opembe N N, Genuino H C, et al. Nonthermal synthesis of three-dimensional metal oxide structures under continuous-flow conditions and their catalytic applications [ J ]. J Phys Chem C,2011,115 (47) : 23273 - 23282.
  • 6王刚,赵瑞红,郭奋,陈建峰,李志平.超重力技术制备有序介孔氧化铝[J].化工学报,2008,59(5):1310-1314. 被引量:5
  • 7DeGuzman R N, Shen Y F, Neth J E,et al. Synthesis and characterization of Octahedral molecular sieves (OMS-2) having the hollandite structure[J]. Chem Mater, 1994,6:815 - 821.
  • 8Shen Y F, DeGuzman R N, Suib S L. Synthesis of manganese oxide octahedraI molecular sieves [ J]. Stud Surf Sci Catal, 1993,83 : 19 - 24.
  • 9Portehauh D, Cassaignon S, Baudrin E, et al. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry, growth mechanisms in aqueous medium [ J]. C hem Mater,2007,19 (22) : 5410 -5417.
  • 10King6ndu C K, Opembe N, Chen C, et al. Manganese oxide oetahedral molecular sieves (OMS-2) multiple framework substitutions:A new route to OMS-2 particle size and morphology control [ J]. Adv Func Mater,2011,21 ( 2 ) :312 - 323.

二级参考文献16

  • 1Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid crystal template meehanism. Nature, 1992, 359:710-712
  • 2Zhou Hongfa. Preparation and Application Technologies of Catalyst Carriers. Beijing: Petroleum Industry Press, 2002
  • 3Xu Ruren, Pang Wenqing. Zeolite and Porous Materials Chemistry. Beijing: Science Press, 2004
  • 4Frederic Vaudry, Shervin Khodabandeh, Mark E Davis. Synthesis of pure alumina mesoporous materials. Chem. Mater., 1996, 8 (7): 1451-1464
  • 5Hongting George F materials Environ. Zhao, Kathryn L Nagy, Jacob S Waples, Vance. Surfactant-templated mesoporous silicate as sorbents for organic pollutants in water. Sci. Technol., 2000, 34 (22): 4822-4827
  • 6Zhao Ruihong, Guo Fen, Hu Yongqi, Zhao Huanqi. Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution. Microporous Mesoporous Mater, 2006, 93:212-216
  • 7Guo Fen, Zheng Chong, Guo Kai, Feng Yuanding, Gardner Nelson C. Hydrodynamics and mass transfer in cross flow rotating packed bed.Chemical Engineering Science,1997,52(21/22):3853-3859.
  • 8Guo Kai, Guo Fen, Feng Yuanding, Chen Jianfeng, Zheng Chong, Gardner Nelson C. Synchronous visual and RTD study on liquid flow in rotating packed bed contactor. Chemical Engineering Science, 2000, 55 (9): 1699-1706
  • 9GuoKai(郭锴) LiuSongnian(柳松年) ChenJianfeng(陈建峰) ZhengChong(郑冲).Recent process of high gravity technology[J].化工进展,1997,(1):49-51.
  • 10Chen Jianfeng, Wang Yuhong, Guo Fen, Wang Xinming, Zheng Chong. Synthesis of nanoparticles with novel technology: high gravity reactive precipitation. Ind. Eng. Chem. Res., 2000, 39 (4): 948-954

共引文献4

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部