期刊文献+

混凝土用硅灰粒度分布参数检测条件的研究 被引量:2

Research on Size Distribution Measurement Condition of Silica Fume Particle Used in Concrete
下载PDF
导出
摘要 为了准确快速测量混凝土用硅灰的粒度分布,以中位径(D50)和粒度分布曲线为评价指标,采用激光粒度仪系统研究了分散剂种类、分散剂浓度、硅灰在介质中浓度、超声分散时间、分散温度以及超声分散频率对硅灰检测结果的影响。结果表明,激光粒度分析仪适用于硅灰粒度分布的检测,且具有高度重复性。六偏磷酸钠和十二烷基苯磺酸钠对硅灰具有显著的分散效果,六偏磷酸钠作为硅灰分散剂的最佳浓度为0.5-1.1g/L。未使用分散剂时,硅灰最佳分散条件为5-15g/L分散浓度、10min分散时间、40℃分散温度和40kHz分散频率;六偏磷酸钠加入后,硅灰最佳分散条件为5-30g/L分散浓度、5min分散时间、20℃分散温度和32kHz分散频率。 In order to measure particle size distribution of silica fume accurately and quickly,the effects of dispersant type,dispersant concentration,solution concentration of silica fume,ultrasonic dispersing time,ultrasonic dispersing temperature and ultrasonic frequency on particle size measurement of silica fume were investigated using median particle diameters( D50) and particle size distribution curve as evaluation indicator. The results indicate that the laser particle size analyzer applies to particle size measurement of silica fume and it has high degree of reproducibility. The dispersion effects are increased significantly by sodium hexametaphosphate and sodium dodecyl benzene sulfonate and the optimal concentration of sodium hexametaphosphate as dispersant of silica fume is 0. 5-1. 1 g / L. The optimized operating dispersing factors of silica fume without dispersant are dispersion concentration 5-15 g / L,dispersion time 10 min,dispersion temperature 40 ℃ and dispersion frequency 40 k Hz. The optimized operating dispersing factors of silica fume with sodium hexametaphosphate dispersant are dispersion concentration 5-30 g / L,dispersion time 5 min,dispersion temperature 20 ℃ and dispersion frequency 32 k Hz.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2015年第1期13-18,共6页 Bulletin of the Chinese Ceramic Society
基金 国家863计划项目(2012AA062405) 国家自然科学基金项目(51378499) 中国铁路总公司科技开发计划项目(J2013C014 2014G004-R)
关键词 激光粒度分析 硅灰 分散剂 分散效果 laser particle size analysis silica fume dispersant dispersion effect
  • 相关文献

参考文献17

  • 1American Concrete Institute. ACI 234R-06 Guide for the use of silica fume in concrete[ R]. American: ACI,2006.
  • 2Ganesh B, Smya P. Efficiency of silica fume in concrete [ J ]. Cement and Concrete Research, 1995,25 (6) : 1273-1283.
  • 3Gozde lnan Sezer. Compressive strength and sulfate resistance of limestone and/or silica fume mortars [ J ]. Construction and Building Materials 2012,26:613-618.
  • 4Larrard F de,Sedran T. Optimization of ultra-high-performance concrete by the use of a packing model[ J]. Cement and Concrete Research, 1994 24(6) : 997-1008.
  • 5李化建.高速铁路轨道板混凝土电阻特性与材料设计研究[R].北京:中国铁道科学研究院,2013.
  • 6李化建,谢永江,易忠来,谭盐宾.氯盐环境下铁路混凝土配合比参数的研究[J].铁道学报,2012,34(9):111-116. 被引量:8
  • 7Mohammad S, Alireza R, Hamed L. Long-term chloride diffusion in silica fume concrete in harsh marine climates [ J]. Cement and Concrete Composites ,2009,31 ( 10 ) :769-775.
  • 8杨文武,钱觉时,黄煜镔.海洋环境下硅灰混凝土的抗冻性与氯离子扩散性[J].重庆大学学报(自然科学版),2009,32(2):158-162. 被引量:14
  • 9Marco M, Oystein V, Luca B. Chloride threshold for rebar corrosion in concrete with addition of silica fume [ J ]. Corrosion Science,2008,50 (2) : 554-560.
  • 10Lothenbach B, Scrivener K, Hooton R D. Supplementary cementitious materials [ J ]. Cement and Concrete Research,2011, (41 ) : 1244-1256.

二级参考文献32

共引文献30

同被引文献18

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部