期刊文献+

基于支持向量机回归算法的疲劳寿命预测研究 被引量:6

Study on fatigue life evaluation based on regression algorithm of support vector machine
下载PDF
导出
摘要 根据材料疲劳损伤的特点,提出了基于支持向量机回归算法的材料疲劳寿命预测方法。收集材料疲劳性能数据构建训练样本集,建立基于支持向量机回归算法的疲劳寿命预测模型,对疲劳载荷预处理后就可以计算出疲劳寿命。预测结果表明,该方法可利用较少的材料疲劳性能数据,实现疲劳寿命的预测。 According to the characteristics of the material fatigue damage, the paper puts forward the fatigue life pre- diction method based on regression algorithm of support vector machine. The material fatigue performance data are collected to build the training sample set and the fatigue life prediction model based on regression algorithm of support vector machine in order to figure out the fatigue life after pre-treatment of the fatigue load. The prediction result shows that the method can predict the fatigue life using only some fatigue performance data.
作者 吴峰崎 刘龙
出处 《起重运输机械》 2015年第2期5-8,共4页 Hoisting and Conveying Machinery
基金 上海市经信委项目<大型起重机安全运行与维保在线监控及远程监管系统> 上海市质量技术监督局科技项目<基于物联网技术的起重机安全监控及寿命评估>和<起重机结构疲劳寿命智能测试评估技术研究>资助
关键词 疲劳 寿命预测 支持向量机 fatigue life evaluation support vector machine
  • 相关文献

参考文献10

  • 1Bathias C,Pineau A.Fatigue of materials and structures:Application to damage and design[M].Wiley,2010.
  • 2Venkatesh Vasisht,Rack H J.A neural network approachto elevated temperature creep-fatigue life prediction[J].International Journal of Fatigue,1999(21):225-234.
  • 3Bucar T,Nagode M,Fajdiga M.An improved neuralcomputing method for describing the scatter of S-N curves[J].International Journal of Fatigue,2007(29):2 125-2 137.
  • 4Mathew M D,Kim Dae Whan,Ryu Woo-Seog.A neuralnetwork model to predict low cycle fatigue life of nitrogen-alloyed 316L stainless steel[J].Materials Science andEngineering A,2008(474):247-253.
  • 5Srinivasan V S,Valsan M,Rao B K,et al.Low cycle fa-tigue and creep-fatigue interaction behavior of 316L(N)stainless steel and life prediction by artificial neural net-work approach[J].International Journal of Fatigue,2003(25):1 327-1 338.
  • 6王雷.多轴疲劳的计算机仿真研究[D].沈阳:东北大学,2007.
  • 7于洋洋,彭志方,李军伟.人工神经网络法在镍基变形合金蠕变断裂寿命预测中的应用[J].材料导报,2004,18(5):62-64. 被引量:2
  • 8Vapnik Y N.The nature of statistical learning theory[M].New York;Springer-Verlag,1995.
  • 9Widodo A,Yang B S.Support vector machine in machinecondition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21(6):2 560 -2 574.
  • 10袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88

二级参考文献40

共引文献88

同被引文献36

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部