期刊文献+

基于矩阵分解的协同过滤算法的并行化研究 被引量:10

Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization
下载PDF
导出
摘要 基于矩阵分解的协同过滤算法是近几年提出的一种协同过滤推荐技术,但其每项预测评分的计算都要综合大量评分数据,同时在计算时还需要存储庞大的特征矩阵,用单一节点来进行推荐将会遇到计算时间和计算资源的瓶颈。通过对现有的基于ALS(最小二乘法)的协同过滤算法在Hadoop上并行化实现的原理和特点进行深入的研究,得到了传统的迭代式算法在Hadoop上运算效率不高的原因。根据迭代式MapReduce思想,提出了循环感知任务调度算法、缓存静态数据、任务循环控制、迭代终止条件检测等方法。通过在Netflix数据集上的实验表明,迭代式MapReduce思想提高了基于ALS的协同过滤算法的并行化计算的效率。 Collaborative filtering algorithm based on matrix factorization is a collaborative filtering recommendation technique proposed in recent years. In the process of recommendation each prediction depends on the collaboration of the whole known rating set and the feature matrices need huge storage. So the recommendation with only one node will meet the bottleneck of time and resource. Through in-depth study on the principle and feature of current parallel implementation of a collaborative filtering algorithm based on ALS ( Alternating- Least-Squares) ,get the reason why the computing efficiency of the implementation of traditional iterative algorithm on Hadoop is very low. According to the idea of iterative MapReduce, some methods such as loop-aware scheduling algorithm, static data caching ,job loop controlling, fixed point detecting are proposed. The experiment on Netflix data set shows that the iterative MapReduce has improved the parallel computing efficiency of collaborative filtering algorithm based on ALS.
出处 《计算机技术与发展》 2015年第2期55-59,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61272500)
关键词 ALS算法 协同过滤 HADOOP 迭代式MapReduce alternating least squares collaborative filtering Hadoop iterative MapReduce
  • 相关文献

参考文献15

二级参考文献88

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 3Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 4Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 5Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 6Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 7Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 8Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 9Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.
  • 10Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53.

共引文献778

同被引文献67

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部