期刊文献+

稳态热传导结构非概率可靠性拓扑优化设计 被引量:5

Topology optimization design of steady-state heat conduction structures considering non-probabilistic reliability
下载PDF
导出
摘要 研究具有区间参数的稳态热传导结构在散热弱度非概率可靠性约束下的拓扑优化设计问题。建立了以单元相对导热系数为设计变量,导热材料体积极小化为目标函数,满足散热弱度非概率可靠性为约束条件的稳态热传导结构的拓扑优化设计数学模型。基于区间因子法,推导出散热弱度的均值及离差的计算表达式。采用渐进结构优化法的求解策略与方法,并利用过滤技术消除优化过程中的数值不稳定性现象。通过算例验证所述模型及求解策略、方法的合理性和有效性。 Topology optimization design of a steady-state heat conduction structure with interval parameters under constraint of dissipation of heat potential capacity was studied.The topology optimization model of the heat conduction structure with interval parameter was constructed based on the constraint of non-probabilistic reliability for dissipation of heat potential capacity.The total volume of heat conductive material was minimized and the relative thermal conductivities of elements were regarded as the design variables here.The computational expressions of numerical characteristics of dissipation of heat potential capacity based on the interval factor method were derived.The evolutionary structural optimization method was used in the optimization.A filtering technique was employed to eliminate numerical instabilities in the process of topology optimization.The numerical examples were presented to demonstrate the feasibility and effectiveness of the optimal model and solving approach.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第3期118-122,共5页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51175398) 中央高校基本科研资金项目(K5051304016)资助
关键词 热传导 区间参数 非概率可靠性 区间因子法 拓扑优化 heat conduction interval parameters non-probabilistic reliability interval factor method topology op-timization
  • 相关文献

参考文献12

  • 1Huang X, Xie Y M. Evolutionary topology optimization of continuum structures including design-dependent self-weight loads[ J]. Finite Elements in Analysis and Design, 2011, 47 ( 8 ) : 942 - 948.
  • 2Zhuang Chun-gang, Xiong Zhen-hua, Ding Han. Topology optimization of the transient heat conduction problem on a triangular mesh [ J ]. Numerical Heat Transfer, 2013, 64(3) : 239 -262.
  • 3Zhuang Chun-gang, Xiong Zhen-hua. A global heat compliance measure based topology optimization for the transient heat conduction problem [ J ]. Numerical Heat Transfer, 2014, 65(5): 445-471.
  • 4Marck G, Nemer M, Harion J, et al. Topology optimization using the SIMP method for multiobjective conductive problems [J]. Numerical Heat Transfer, 2012, 61(6) : 439 -470.
  • 5Zhuang Chun-gang, Xiong Zhen-hua, Ding Han. Topology optimization of multi-material for the heat conduction problem based on the level set method[J]. Engineering Optimization, 2010, 42(9) : 811 -831.
  • 6Ahh S H, Cho S. Level Set-based topological shape optimization of heat conduction problems considering design- dependent convection boundary [ J ]. Numerical Heat Transfer, 2010, 58(5): 304-322.
  • 7Akihiro T, Gil H Y, Seung H J, et al. Structural topology optimization with strength and heat conduction constraints [ J ]. Computer Methods in Applied Mechanics and Engineering, 2014, 276:3411 -361.
  • 8李超,李以农,施磊,郑玲.圆柱壳体阻尼材料布局拓扑优化研究[J].振动与冲击,2012,31(4):48-52. 被引量:14
  • 9房占鹏,郑玲.约束阻尼结构的双向渐进拓扑优化[J].振动与冲击,2014,33(8):165-170. 被引量:17
  • 10Zheng Ling, Xie Rong-lu, Wang Yi, et al. Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach [ J ]. Journal of Vibration and Shock, 2014, 33 ( 8 ) : 165 - 170.

二级参考文献34

共引文献321

同被引文献35

  • 1郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报,2005,22(2):227-231. 被引量:76
  • 2陈建军,杜雷,崔明涛,王小兵,梁震涛.基于概率的平面连续体结构拓扑优化[J].应用力学学报,2006,23(2):203-207. 被引量:5
  • 3江涛,陈建军,张弛江.区间模型非概率可靠性指标的仿射算法[J].机械强度,2007,29(2):251-255. 被引量:7
  • 4江涛,陈建军,姜培刚,拓耀飞.区间模型非概率可靠性指标的一维优化算法[J].工程力学,2007,24(7):23-27. 被引量:23
  • 5袁代林,陈虬.桁架结构拓扑优化的微粒群算法[J].西南交通大学学报,2007,42(1):94-98. 被引量:10
  • 6Mehdi Jalapour, James K Guest, Takeru Igusa. Reliability-based topology optimization of trusses with stochastic stiffness[J]. Struc-tural Safety, 2013, 47 : 41 -49.
  • 7Young-Sop Enm, Kwang-Sun Yon, Jae-Yong Park, et al. Reliabili- ty-based topology optimization using a standard response surface method for three-dimensional structures [ J ]. Structural and Multi- disciplinary Optimization, 2011,43 (2) : 287 - 295..
  • 8Kwang-Sun Yon, Young-Sop Eom, Jae-Yong Park, et al. Reliabili- ty-based topology optimization using successive standard response surface method [ J ]. Finite Elements in Analysis and Design, 2011,47(7) : 843 -849.
  • 9Li Ming, Tang Wencheng, Yuan Man. Structural dynamic topology optimization based on dynamic reliability using equivalent static loads[ J]. Structural and Multidisciplinary Optimization, 2014, 49 (1): 121 -129.
  • 10Luo Yangiun, Zhou Mingdong, Michael Yu Wang, et al. Reliabili- ty based topology optimization for continuum structures with local failure constraints I J]. Computers and Structures, 2014, 143: 73 - 84.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部