期刊文献+

旋转复合材料薄壁轴的不平衡非线性弯曲振动 被引量:2

Nonlinear bending vibration of an unbalanced rotating composite thin-walled shaft
下载PDF
导出
摘要 研究几何非线性复合材料薄壁轴在偏心激励作用下的非线性振动特性。在轴的应变位移关系中引入Von Kármán几何非线性,基于Hamilton原理和变分渐进法(VAM)导出复合材料传动轴的拉-弯-扭耦合非线性振动偏微分方程组。为了着重研究轴的横向弯曲非线性振动特性,在上述模型中忽略轴向变形和扭转变形,得到轴的横向弯曲非线性振动偏微分方程,其中考虑了黏滞外阻和内阻的影响。采用Galerkin法,将偏微分方程转离散化为常微分方程,在此基础上利用四阶Runge-Kutta法对常微分方程组进行数值模拟,获得位移时间响应图、相平面图和功率谱图,研究了外阻、内组、偏心距和转速对非线性振动响应的影响,发现旋转复合材料薄壁轴存在混沌运动。 The dynamic behavior of rotating composite thin-walled shafts with geometrical non-linearity was studied here.The nonlinear tensional-bending-torsional vibration equations for a rotating composite thin-walled shaft were derived using Hamilton's energy principle and variational-asymptotical method (VAM).On the basis of von Karman's assumption, the geometrical nonlinearity was included in the relationship of strain and displacement of the shaft. In order to emphatically study the shaft's nonlinear bending vibration,the tensional and torsional deformations were ignored.Thus, the nonlinear bending vibration equations for the rotating composite thin-walled shaft were obtained considering the external and internal viscous dampings.Galerkin's method was used to discretize the governing equations and the ordinary differential equations of the rotating shaft hending vibration were obtained.By using the fourth-order Runge-Kutta method, the differential equations were integrated numerically in time domain,the displacement-time responses,phase plane curves and power spectra of the shaft were obtained.The effects of external damping,internal damping,mass eccentricity and rotating speed on the nonlinear bending vibration responses of the shaft were studied.The numerical simulation results showed that the shaft may exhibit a chaotic motion.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第3期150-155,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(11272190) 山东省自然科学基金(ZR2011EEM031) 山东科技大学研究生科技创新基金项目(YC130210)资助项目
关键词 非线性振动 复合材料薄壁轴 旋转轴 nonlinear vibration composite thin-walled shaft rotating shaft
  • 相关文献

参考文献11

  • 1Hetherington E L, Kraus R E, Darlow M S. Demonstration of a super critical composite helicopter power transmission shaft [ J ]. Journal of American Helicopter Society, 1990,35 ( 1 ) : 23 - 28.
  • 2Shaw J, Shaw S W. Non-linear resonance of an unbalanced rotating shaft with internal damping[J]. Journal of Sound and Vibration, 1991,147:435 - 451.
  • 3Ishida Y, Nagasaka I, Inoue T, et al. Forced oscillations of a vertical continuous rotor with geometric nonlinearity [ J ]. Nonlinear Dynamics, 1996, 11 : 107 - 120.
  • 4陈予恕,丁千.非线性转子动力学的稳定性和分岔[J].非线性动力学学报,1996,3(1):13-22. 被引量:6
  • 5Hosseini S A A, Khadem S E. Analytical solution for primary resonances of a rotating shaft with stretching non-linearity [ J ]. Journal of Mechanical Engineering Science, 2008,222 : 1655 - 1664.
  • 6Shahgholi M, Khadem S E. Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity [ J ]. Mechanism and Machine Theory, 2012,51 : 131 -144.
  • 7Bhaskar K, Librescu L. A Geometrically non-linear theory for laminated anisotropic thin-walled beams [ J ]. International Journal of Engineering Science, 1995, 33 (9) :1331 - 1344.
  • 8石庆华,向锦武.大变形薄壁复合材料旋转梁静动态特性分析[J].工程力学,2008,25(1):86-91. 被引量:6
  • 9任勇生,代其义,孙丙磊,张纯金.旋转几何非线性复合材料薄壁梁的自由振动分析[J].振动与冲击,2013,32(14):139-147. 被引量:8
  • 10Berdichevsky V, Armanios E, Badir A. Theory of anistropic thin-walled closed-cross-section beams [ J ]. Composites Engineering, 1992,2:411 -432.

二级参考文献27

  • 1王元丰,诸德超.复合材料薄壁旋转梁的研究进展[J].力学进展,1996,26(2):179-186. 被引量:7
  • 2Librescu Liviu, Qin Zhanming. Implications of warping restraint on static and dynamics of elastically tailored thin-walled composite beams [J]. Journal of Mechanical Sciences, 2003, 45(8): 1247-- 1267.
  • 3Kwak Hyo Gyoung, Kin Do Yeon. Effect of warping in geometric nonlinear analysis of spatial beams [J]. Journal of Constructional Steel Research, 2001, 57(7): 729-- 751.
  • 4Kim Cheol, White Scottr. Thick-walled composite beam theory including 3-D elastic effects and torsional warping [J]. International Journal Solids Structures, 1997, 34(31): 4237--4259.
  • 5Smith E C, Chopra I. Formulations and evaluation of analytical model for composite box beams [J]. Journal of Americal Helicopter Society, 1991, 36(1): 23--35.
  • 6Seong Min Jeon, Maeng Hyo Cho, Lee In. Static and dynamic analysis of composite box beams using large deflection theory [J]. Computer and Structure, 1995, 57(4): 635--642.
  • 7Stemple A D, Lee S W. A finite element model for composite beams undergoing large deflection with arbitrary cross-sectional warping [J]. International Journal for Numerical Methods in Engineering, 1989, 28(7): 2143--2160.
  • 8Stemple A D, Lee S W. A fmite element model for composite beams with arbitrary cross-sectional warping [J]. International Journal for Numerical Methods in Engineering, 1987, 24(12): 304--313.
  • 9Kane T R, Likins P W, Levinson D A. Spacecraft dynamics [M]. New York: McGraw-Hill Inc, 1983.
  • 10Bathe K J. Finite element procedures in engineering analysis [M]. Englewood Cliffs N J, New York: Prentice-Hill, 1982.

共引文献17

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部