期刊文献+

Biot理论与修正的Biot理论比较及讨论 被引量:16

Comparison and discussion for Biot theory and modified Biot one
下载PDF
导出
摘要 对Biot理论和修正的Biot理论中的波动方程进行了详细推导,注明了每个参数的量纲和准确含义,并基于修正的Biot理论导出了三种不同形式的波动方程;对两种理论进行比较,得到了Biot弹性系数表达式,并分析了两者的应力及其对应关系;最后,着重对易被混淆的孔隙流体压力符号的正方向和含义,以及基本方程中部分参数的定义式进行了讨论,有助于更好地理解、应用Biot理论和修正的Biot理论。 The wave equations of Biot theory and modified Biot one were derived, and the dimension and correct definition of each parameter in the equations were clearly indicated. Based on the modified Biot theory, three different forms of wave equations were derived as well. Then, by comparing those two theories, the expressions of Biot elastic coefficients were obtained, and the stresses of the two theories and their correspondences were analyzed. Finally, particularly, the positive direction and meaning of pore-fluid pressure sign and the definitions of part parameters in the fundamental equations were discussed to be helpful for understanding and using the two theories.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第4期148-152,194,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(U1234204 51378463)
关键词 BIOT理论 修正的Biot理论 弹性系数 应力 孔隙流体压力 参数 biot theory modified biot theory elastic coefficients stress pore-fluid pressure parameters
  • 相关文献

参考文献23

  • 1Biot M A. Theory of propagation of elastic waves in a fluid- saturated porous solid. I. Low frequency range [ J ]. Acoustical Society of America, 1956, 28(2) : 168 -179.
  • 2Biot M A. Theory of propagation of elastic waves in a fluid- saturated porous solid. 11. Higher frequency range [ J ]. Acoustical Society of America, 1956, 28(2) : 179 -191.
  • 3Depollier C, Allard J F, Lauriks W. Biot theory and stress- strain equation in porous sound-absorbing materials [ J ]. Acoustical Society of America, 1988, 84 (6) : 2277 - 2279.
  • 4Yang J. Importance of flow condition on seismic waves at a saturated porous solid boundary [ J ]. Journal of Sound and Vibration. 1999. 221(3:, 391 -413.
  • 5杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性[J].振动工程学报,1996,9(2):128-137. 被引量:44
  • 6Imomnazarov K K. Some remarks on the Biot system of equation describing wave propagation in a porous medium [ J ]. Applied Mathematics Letters, 2000 ( 13 ) : 33 - 35.
  • 7Santos J E, Corbero J M, Ravazzoli C L, et al. Reflection and transmission coefficients in fluid-saturated porous media [J] Acoustical Society of America, 1992, 91 (g) : 1911 - 1923.
  • 8黄茂松,李进军.饱和多孔介质土动力学理论与数值解法[J].同济大学学报(自然科学版),2004,32(7):851-856. 被引量:16
  • 9Blot M A, Willis D G. The elastic coefficients of the theory of consolidation [ J]. Journal of Applied Physics, 1957, 24: 595 - 601.
  • 10Claude Depollier, et al. Biot theory and stress-strain equations in porous sound-absorbing materials [ J ]. Acoustical Society of America, 1988, 84(6): 2277-2279.

二级参考文献81

共引文献126

同被引文献110

引证文献16

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部