期刊文献+

基于自适应模糊神经网络推理系统的齿轮箱故障诊断方法 被引量:1

Gearbox Fault Detection Method Based on Adaptive Neuro-Fuzzy Inference System
下载PDF
导出
摘要 研究利用从机械控制过程中获得的运行参数开发一种齿轮箱监测方法,而非振动与声音的传统测量方法。为了检测齿轮箱状态,采用一种自适应模糊神经推理系统来获取电机电流和控制参数之间的非线性相关性。比较自适应模糊神经推理系统模型产生的预测值和实测值来预测齿轮箱异常状态。试验结果表明,自适应模糊神经推理系统模型能够作为齿轮箱状态监测与故障检测的一种有效工具。 This study force to develop the gear-box monitoring methods using the operating pa-rameters obtained from machine control processesrather than the traditional measurements such asvibration and acoustics. To monitor the gearboxconditions,an adaptive neuro- fuzzy inference sys-tem (ANFIS) is used to capture the nonlinear con-nections between the electrical motor current andcontrol parameters such as load settings and tem-perature. The experimental results show that AN-FIS model is able to serve as an efficient tool forgearbox condition monitoring and fault detection.
作者 张海霞 徐娟
机构地区 秦皇岛供电公司
出处 《机械与电子》 2015年第2期51-55,共5页 Machinery & Electronics
关键词 状态监测 自适应模糊神经推理系统 齿轮箱故障 故障检测 运行参数 condition monitoring adaptive neu-ro - fuzzy inference system gearbox fault fault de-tection operating parameters
  • 相关文献

参考文献10

  • 1陈雪峰,李继猛,程航,李兵,何正嘉.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52. 被引量:193
  • 2Hameed Z, Hong Y S,Cho Y M,et al. Condition moni- toring and fault detection of wind turbines and related algorithms: A review [J]. Renewable and Sustainable Energy Reviews, 2009,13 : 1 - 39.
  • 3McArthur S,Strachan S,Jahn G. The design of a multi - agent system for transformer condition monitoring [J]. IEEE Transactions on Power System, 2004, 19 (4) :1845 - 1852.
  • 4Bouillaut L, Sidahmed M. Helicopter gearbox vibra- tions: cyclo - stationary analysis or bilinear approach [C]. ISSPA,2001.
  • 5Wilson Q W,Ismail F,Golnaraghi M F. Assessment of gear damage monitoring techniques using vibration measurements[J]. Mechanical System and Signal Pro- cessing,2001,1S(5) :905 - 922.
  • 6Baydar N,Ball A, A comparative study of acoustic and vibration signals in detection of gear failures using Winger- ville distribution[J]. Mechanical System and Signal Processing,2001,15(6) : 1091 - 1107.
  • 7Lin J,Zuo M J. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical System and Signal Pro- cessing, 2003.17 ( 6 ) : 1259 - 1269.
  • 8Hamidian D. Seyedpoor M. Shape optimal design of arch dams using an adaptive neuro - fuzzy inference system and improved particle swarm optimization[J]. Journal of applied mathematical modeling. 2010, 34 (6) :1574 - 1585.
  • 9张智星,孙春在,水谷英二.神经-模糊和软计算[M].张平安,高春华,译.西安:西安交通大学出版社,2001:229-255.
  • 10Jang S. ANFIS: Adaptive network - based fuzzy in- ference system[J]. IEEE on Systems, Man and Cy- bernetics,1993,23(3) :665 - 685.

二级参考文献30

  • 1郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 2唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 3贺娇.风能资源详查将推动产业发展[N].中国能源报,2010-02-01(15).
  • 4中国风能协会.2009年中国风电装机容量统计[R].北京:CWEA,2010.
  • 5国际新能源网.财政支持新能源的政策体系趋于完善和多样化[EB/OL].(2009-7-14)[2010-04-1].http:www.in-en.com/newenergy/html/newenergy-141514-1564403796.html.
  • 6李俊峰,高虎,王仲颖,等.2008年中国风电发展报告[R].北京:中国环境科学出版社,2008.
  • 7Caithness Windfarms Information Forum.Summary of wind turbine accident data to 31st March 2010[EB/OL].(2010-03-31)[2010-04-15].http://www.caithnesswindfarms.co.uk/page4.htm.
  • 8RIBRANT J.Reliability performance and maintenance-a survey of failures in wind power systems[D].Sweden:Royal Institute of Technology,2006.
  • 9西班牙EHN公司风电项目开发、运行、维护的经验[EB/OL].(2010-03-31)[2010-04-15].htto://www.windpowerchina.en/node/428.
  • 10HAMEED Z,HONG Y S,CHOY M,et al.Condition monitoring and fault detection of wind turbines and related,algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009(13):1-39.

共引文献194

同被引文献9

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部