期刊文献+

一种基于Grassmann流形的图像集分类算法研究

Research on Image Set Classification Algorithm Based on Grassmann Manifolds
下载PDF
导出
摘要 当前基于多模型的图像集分类方法通过对每个图像集进行单次聚类来提取局部模型,与其他图像集进行匹配时使用固定的聚类。然而,如果环境条件不佳,则可能导致两个最近邻聚类表示同一对象的不同特征。针对这一问题,首先,根据重建误差,在Grassmann流形上定义两个子空间间的Frobenius范数距离。然后,通过稀疏表示从画廊图像集中提取局部线性子空间。对每个局部线性子空间,通过联合稀疏表示,利用探测图像集的样本来自适应构建相应的最近邻子空间。基于Honda、ETH-80和Cambridge-Gesture数据集的实验结果表明,与基于仿射包的图像集距离(AHISD)、稀疏近似最近邻点(SANP)和流形判别分析(MDA)等其他算法相比,算法的性能更优。 Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions. In response to this problem, this paper first defines a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. It then extracts local linear subspaees from a gallery image set via sparse representation. For each local linear subspace, the paper adaptively constructs the corresponding closest subspace from the samples of a probe image set by joint sparse representation. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent tech- niques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discri- minant Analysis (MDA).
作者 黄淼 张国平
机构地区 平顶山学院
出处 《微型电脑应用》 2015年第1期8-13,共6页 Microcomputer Applications
基金 国家自然科学基金(NU1204611)
关键词 图像集分类 聚类 GRASSMANN流形 稀疏表示 最近邻子空间 Image Set Classification Clusters Grassmann Manifolds Sparse Representation Closest Subspace
  • 相关文献

参考文献18

  • 1张晶,冯林,王乐,刘胜蓝.MapReduce框架下的实时大数据图像分类[J].计算机辅助设计与图形学学报,2014,26(8):1263-1271. 被引量:6
  • 2Amndjelovic O, Shakhnarovich G, Fisher J, et al. Face recognition with image sets using manifold density di- vergence[C]. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 1: 581-588.
  • 3Cardinaux F, Sanderson C, Bengio S. User authentication via adapted statistical models of face images [J]. Signal Processing, IEEE Transactions on, 2006, 54(1): 361-373.
  • 4Hadid A, PietikNnen M. Manifold learning for vid- eo-to-video face recognition[M].Biometric ID Manage- ment and Multimodal Communication. Springer Berlin Heidelberg, 2009: 9-16.
  • 5Yang W, Sun C, Zhang L. A multi-manifold discriminant analysis method for image feature extraction [J]. Pattern Recognition, 2011, 44(8): 1649-1657.
  • 6刘剑,龚志恒,吴成东,高恩阳.一种基于改进高斯过程隐变量模型的多角度人脸识别算法[J].电子与信息学报,2013,35(9):2033-2039. 被引量:4
  • 7Tropp J A, Gilbert A C, Strauss M J. Algorithms for si- multaneous sparse approximation. Part I: Greedy pursuit [J]. Signal Processing, 2006, 86(3): 572-588.
  • 8Chen J, Huo X. Theoretical results on sparse representa- tions of multiple-measurement vectors [J]. Signal Processing, IEEE Transactions on, 2006, 54(12): 4634-4643.
  • 9Sanin A, Sanderson C, Harandi M T, et al. Spa- do-temporal covariance descriptors for action and gesture recognition[C]. Applications of Computer Vision (WACV), 2013 IEEE Workshop on. IEEE, 2013:103-110.
  • 10Lee K C, Ho J, Yang M H, et al. Video-based face recog- nition using probabilistic appearance manifolds[C]. Computer Vision and Pattern Recognition, 2003. Pro- ceedings. 2003 IEEE Computer Society Conference on. IEEE, 2003:313-320.

二级参考文献40

  • 1Gentle J E, H~rdle W K, and Mori Y C. Handbook of Computational Statistics: Concepts and Methods[M]. Second Edition, Germany: Springer Press, 2012: 883-926.
  • 2Cruz-Mota J, Bogdanova I, Pluier B, et al.. Scale invariant feature transform on the sphere: theory and applications[J]. The International Journal of Computer Vision, 2012, 98(2): 217-241.
  • 3Dalai N and Triggs B. Histogranls of oriented gradients for human detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893.
  • 4Rencher A C and Christensen W F. Methods of Multivariate AnalysisIM]. Third Edition, Hoboken: Wiley Press, 2012: 405-433.
  • 5Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 6Cevikalp H and Triggs B. Face recognition based on image sets[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2567-2573.
  • 7Liu Xiu-wen, Srivastava A, and Gallivan K. Optimal linear representations of images for object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 662-666.
  • 8Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9Hamm J and Lee D D. Grassmann discriminant analysis: a unifying view on subspace-based learning[C]. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 376-383.
  • 10Wang Tie-sheng and Shi Peng-fei. Kernel G distances and discriminant analysis for face recognition from image sets[J]. Pattern Recognition Letters, 2009, 30(13), 1161-1165.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部