期刊文献+

基于三轴加速度传感器和电子罗盘的人体摔倒监测系统 被引量:11

System for Fall Monitoring Based on 3-Axis Accelerometer and Electronic Compass
下载PDF
导出
摘要 设计了一种具有远程监控功能的人体摔倒监测系统,为实现系统的小体积和低功耗,系统硬件主要由MS]P430F149单片机、三轴加速度传感器、电子罗盘和无线通信模块组成,由MMA8453Q采集人体运动过程中的三轴加速度数据、CPS320T模块采集人体运动状态参数、无线模块nRF24L01实现系统与工作站间的数据通信。分析了系统的主要硬件模块的接口电路设计方法,并给出了基于硬件的摔倒监测算法。实验结果表明,本系统摔倒监测准确率达98.8%,功耗低,具有很强的实用性。 The system for fall monitoring with function of remote monitoring is designed.The system is composed of MSP430 MCU,3-axis accelerometer,electronic compass and wireless communication module for small size and low power.Three-axis acceleration data are collected by MMA8453 Q,state parameters of human body during exercise are collected by CPS320 T,two-way communication between system and workstation is realized by nRF24L01.The interface circuit design of the hardware module and software algorithm of fall monitoring are analyzed.The experiment results demonstrate that the system has a great practical value with its 98.8%accuracy of fall monitoring and low power.
出处 《测控技术》 CSCD 2015年第2期16-19,共4页 Measurement & Control Technology
基金 北京市教委科技发展计划项目(KM201410011003) 北京市教委专项课题(PXM2013-014213-000044)
关键词 摔倒监测 三轴加速度传感器 电子罗盘 远程监控 fall monitoring 3-axis accelerometer electronic compass remote monitoring
  • 相关文献

参考文献8

二级参考文献36

  • 1MOSTRAC P, ROMAN M, JURCEVIC M, et al.System formonitoring and fall detection if patients using mobile 3-axis aceelerometer sensors[C].2011 IEEE International Workshop on MemeA, Bari, 2011: 456-459.
  • 2CHEN T C.Fall detection and location using ZigBee sensor network[C].Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Harbin, 2011,2 : 937-941.
  • 3Gao Yang, Gao Jingmin, Wang Jiuhe.Research of humen fall detection algorithm based on tri-axis accelerometer[J]. International Conference on Remote Sensing, 2012,500: 623 -628.
  • 4Zhang Tong, Wang Jue, Liu Ping, et al.Fall detection bywearable sensor and one-class SVM algorithm[J].Lecture Notes in Control and Information Sciences, 2006,345:858- 863.
  • 5Ning Jia.Fall detection application by using 3-axis accelerometer ADXL345[Z].Analog Devices,Application Note : AN- 1023,2009.
  • 6QIAN Hui-min, MAO Yao-bin, XIANG Wen-be, et al. Recognition of human activities using SVM muhi-class classifier [ J ]. Pattern Recognition Letters,2010,31 (2) :100-111.
  • 7ZAFAR A K, WON S. Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care[J]. Consumer Electronics,2011,58(4) :1843-1850.
  • 8ADITHYAN P, BHARGAVI R, VAIDEHI V. Abnormal human ac- tivity recognition using SVM based approach [ C ]//Proc of Interna- tional Conference on Recent Trends in Information Technology. 2012: 97-102.
  • 9HE Jin, LI Hua-ming, TAN Jin-dong. Real-time daily activity classi- fication with wireless sensor networks using hidden Markov model [ C ]//Proc of the 29th Annual International Conference of IEEE En- gineering in Medicine and Biology Society. Piscataway : IEEE Press, 2007:3192-3195.
  • 10WEI Hong-xing, HE Jin, TAN Jin-dong. Layered hidden Markov models for real-time daily activity monitoring using body sensor net- works [ J ]. Knowledge and Information Systems, 2011,29 ( 2 ) : 479-494.

共引文献104

同被引文献85

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部