摘要
对铁路红外轴温探测是目前判断列车安全与否的主要方法。由于现阶段对轴温探测多为单点式红外采集系统,使得问题车轴的判定具有较高的不可靠性。因此研究了四点线阵式红外探测器的铁路轴温探测系统,通过将数据融合思想和模式识别技术结合起来的方法,对问题车轴进行识别。此方法可有效解决以前的探测系统对单一红外探测器的不稳定性,能高效查找问题车轴,使高速列车的安全性在很大程度上得以提高。
The railway infrared shaft temperature detection is the main method to determine the safety of the train.Because of axle temperature detection being mostly single point infrared acquisition system at present,judgment to flawed axles is of low reliability.Therefore a four-point line array infrared detector for railway axle temperature detection system is studied,which combines data fusion and pattern recognition technology to identify problems.This method effectively solves the instability of former single infrared detector,which can efficiently search problems,so that the safety of high-speed train can be improved to a great extent.
出处
《测控技术》
CSCD
2015年第2期48-50,54,共4页
Measurement & Control Technology
关键词
铁路轴温探测
红外探测器
数据融合算法
模糊神经网络
rail axle temperature detection
infrared sensor
data fusion algorithm
fuzzy neural network