期刊文献+

行程长度纹理特征应用于肠癌病理图片识别 被引量:8

Recognition of colorectal cancer pathological images based on run length texture features
下载PDF
导出
摘要 传统的肠癌病理诊断都由病理医生完成,随着图像处理技术的发展,为满足医学病理图像辅助诊断的需要,提出用灰度行程纹理特征(GLRLM)来识别大肠病变切片.考虑到传统的灰度行程长度纹理特征预处理方式未充分利用图像彩色信息和病理图像的组织学信息,提出将模糊C均值应用于大肠彩色病理图像的预处理,然后提取图像的行程长度纹理特征,最后利用支持向量机分类.通过与灰度共生矩阵纹理特征对比,行程长度纹理特征和改进的行程长度纹理特征具有更高的分类准确率.同时用SVM分类器与BP神经网络、最近邻分类器对比,根据实验结果得出SVM分类器更适合小样本肠癌病理图像的分类. Conventional pathology of colorectal cancer is diagnosed by pathologists.With the development of image processing technology,the gray level run length matrix(GLRLM)is used to recognize the pathological images in order to meet the demand of computer-aided diagnosis for medical images.Because the traditional GLRLM algorithm ignores the color and structural information behind the images,an improved algorithm was proposed using FCM for the preprocessing.Then the run length texture features of the image are extracted.Finally,the SVM is used to classify the pathological pictures.Compared with gray level co-occurrence matrix texture feature extraction algorithm,the experiments show that the traditional GLRLM and improved GLRLM have higher classification accuracy.Meanwhile,compared with KNN and BP,experiments show that SVM classifier is more appropriate for classification of small samples such as colorectal cancer pathological images.
出处 《浙江工业大学学报》 CAS 北大核心 2015年第1期110-114,共5页 Journal of Zhejiang University of Technology
关键词 肠癌 模糊C均值 灰度行程长度 辅助诊断 支持向量机 colorectal cancer FCM GLRLM computer-aided diagnosis SVM
  • 相关文献

参考文献14

  • 1SIEGEl. R, NAISHADHAM D, JEMAL A. Cancer statistics [J]. ACancer Journal forClinieians,2013,63(1):11-30.
  • 2BARRETT J, JIWA M, ROSE P, et al. Pathways to the di- agnosis of colorectal cancer:an observational study in three UK cities[J]. Family Practice, 2006,23( 1 ) : 15-19.
  • 3JAFARI-KHOUZANI K, SOLTANIAN-ZADEH H. Multi- wavelet grading of pathological images of prostate[J]. IEEE Transactions on Biomedical Engineering, 2003, 50 ( 6 ) : 697- 704.
  • 4WANG Y, CROOKES D, ELDIN O S. et al. Assisted diagno- sis of cervical intraepithelial neoplasia[J]. IEEE Journal of Se- lected Topics in Signal Processing,2009,3( 1 ) : 112-121.
  • 5TOSUN A B, GUNDUZ-DEMIR C. Graph run-length matri- ces for histopathologieal image segmentation[J]. IEEE Trans- actions on Medical Imaging,2011,30(3):721-732.
  • 6TOSUN A B, KANDEMIR M, SOKMENSUER C, et al. Object-oriented texture analysis for the unsupervised segmen- tation of biopsy images for cancer deteetion[J]. Pattern Rec- ognition,2009,42(6) : 1104-1112.
  • 7JIAO Liping, CHEN Qi ,LI Shuyu, et al. Colon cancer detec- tion using whole slide histopathological images [C]// Mian Long . World Congress on Medical Physics and Biomedical En- gineering. Beijing, China:Springer Berlin Heidelberg, 2013: 1283-1286.
  • 8XU Yan, JIAO Liping, WANG Siyu, et al. Multi-label classi- fication for colon cancer using histopathological images [J]. Microscopy Research and Technique, 2013, 76 (12): 1266- 1277.
  • 9ALTUNBAY D, CIGIR C, SOKMENSUER C, et al. Color graphs for automated cancer diagnosis and grading[J]. Bio- medical Engineering, IEEE Transactions on,2010,57(3) :665- 674.
  • 10陈玲,沈红标,李咸伟,刘其真.改进的图像纹理检索方法在矿石识别中的应用[J].中国图象图形学报,2006,11(11):1700-1703. 被引量:12

二级参考文献55

  • 1郭治,杜铭华,曲思建.焦炭反应性及反应后强度预测模型研究与分析[J].煤炭学报,2005,30(1):113-117. 被引量:13
  • 2李晓峰,徐玖平.上市公司财务预警的BP神经网络模型的建立及其应用[J].数学的实践与认识,2006,36(4):5-11. 被引量:7
  • 3MARKIEWICZ T,OSOWSKI S.Data mining techniques for feature selection in blood cell recognition[C]//14th European Symposium on Artificial Neural Networks.Bruges:Proceedings-European Symposium on Artificial Neural Networks,2006:26-28.
  • 4OSOWSKI S,MARKIEWICZ T,MARIANSKA B,et al.Feature generation for the cell image recognition of myelogenous leukemia[C]//12th European Signal Processing Conference.Vienna:Technische Universit(a)t,Wien,AUTRICHE,2004:753-756.
  • 5VAPNIK V N.Statistical learning theory[M].New York:Wiley Press,1998.
  • 6PLATT J,CRISTIANINI N,SHAWE T J.Large margin DAGs for multiclass classification[C]//Advances in Neural Information Processing Systems.Massachusetts:MIT Press,2000:547-553.
  • 7WESTON J,WATKINS C.Multi-class support vector machines[R].England:Department of Computer Science,Royal Holloway University of London,1998.
  • 8胡小峰,赵辉.Visual C++/Matlab图像处理与识别实用案例精选[M].北京:人民邮电出版社,2004:9.
  • 9Haralick R M,Shapiro L G.Computer and robot vision[M],Reading,Mass,USA:Addison-Wesley,1992.
  • 10Wechsler H.Texture analysis -A survey[J].Signal Processing,1980,7(2):271 ~280.

共引文献38

同被引文献43

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部