期刊文献+

一种改进的基于K-Means的蚁群聚类算法

An Improved Ant Colony Clustering Algorithm Based on K-Means
下载PDF
导出
摘要 聚类分析被广泛用于数据挖掘等领域,基于蚁群算法的聚类算法也得以应用。针对K-Means算法和蚁群聚类算法出现的缺点,利用了K-Means算法快速确定聚类中心和精英适应保留值的策略,提出了一种改进的基于K-Means的蚁群聚类算法。仿真实验表明,改进算法的性能得到有效提高。 Clustering analysis is mainly used for dada mining, so does the ant colony clustering algorithm. In this paper, an improved ant colony algorithm is presented based on K - Means algorithm and a mechanism of the best solution kept. It can definite culster center fastly in the beginning and make the best solution kept for the next time. The simulated results show that the improved algorithm has better performance.
作者 尚玉新
出处 《山东商业职业技术学院学报》 2015年第1期93-95,共3页 Journal of Shandong Institute of Commerce and Technology
关键词 聚类分析 K-MEANS算法 蚁群算法 信息素 clustering analysis K- Means algorithm ant colony algorithm pheromone
  • 相关文献

参考文献13

  • 1Chen M S. Data mining :An overview from a database per- spective[J]. IEEE Transaction on Knowledge and Data En- gineering, 1996,8 (6) : 833 - 866.
  • 2刘念涛,刘希玉.基于改进的启发式蚁群算法的聚类问题的研究[J].计算机技术与发展,2007,17(8):37-39. 被引量:8
  • 3Handl J, Knowles J, Dorigo M. On the performance of ant - based clustering [ C ]//Proc of the 3rd Int Conf on Hybrid Intelligent Systems. Australia :IOS Press,2003,12.
  • 4Colorni A, Dorigo M, Manierzzo V, et al. Distributed optimi-zation by ant coloies[ C]//Proc of European Conf on Artifi- cial Life. Paris, France: Elsevier Publishing, 1991 : 134 - 142.
  • 5Deneubourg J L,Goss S, Franks N,et al. The Dynamics of Collectivesorting: Robot- Like Ants and Ant -Like Robots [ C ]//Proc of the 1 st Int' 1 Conf on Simulation of Adaptive Haviour, 1991:356 - 365.
  • 6Lumer E, Faieta B. Diversity and Adaption in Populations of Clustering Ants[ C]//Proc of the 3rd Int' 1 Conf on Simula- tion of Adaptive Behavior, 1994 : 501 - 508.
  • 7Monmarche N,Siimane M, Venturini G. AntClass : discovery of clusters in numeric data by a hybridization of an ant Colo- ny with the K means algorithm [ R ]. Internal Report, Switz- erland: Is. n. ] ,1999.
  • 8高尚,汤可宗,杨静宇.一种新的基于混合蚁群算法的聚类方法[J].微电子学与计算机,2006,23(12):38-40. 被引量:17
  • 9韩强,邢洁清.蚁群聚类组合方法参数M的研究[J].电脑知识与技术,2009,0(12X):10469-10471. 被引量:1
  • 10高尚,杨静宇,吴小俊.聚类问题的蚁群算法[J].计算机工程与应用,2004,40(8):90-91. 被引量:27

二级参考文献47

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部