期刊文献+

带tt*-结构的Frobenius流形上两个平坦亚纯联络形式同构的存在性

An Constructional Proof for the Existence of the Formal Isomorphism Between Two Flat Meromorphic Connections on a Frobenius Manifold with a tt*-Structure
下载PDF
导出
摘要 超曲面奇异的半通用展开的基空间上可以自然赋予一个几何结构,Hertling把该结构公理化称之为CV-结构,并证明了该几何结构和基空间上的典范Frobenius流形是相容的,从而给出了CDV-结构。给定任意的CDV-结构M,在切丛的拉回丛H:=π*T(1,0)M上,有两个自然地平坦亚纯联络,且奇点只在{0}×M和{∞}×M上。如果该CDV-结构中的Frobenius流形结构是一个半单Frobenius流形时,这两个联络都是非正则的亚纯联络。通过已知的非正则平坦亚纯联络分类定理得到形式同构存在性定理:这两个自然的平坦亚纯联络是形式同构的。将给出该形式同构存在性定理的另一个证明:显式构造性证明。 The base space of the universal unfolding of isolated hypersurface singularities can be e-quipped with a geometry structure,which was atomizated by Hertling as CV-structures.Hertling also proved that this structure is compatible with the canonical Frobenius manifold on the base space and gave CDV-structure.Given any CDV-structure M,there are two natural flat meromorphic connections D and on the pull-back bundles of the complex tangent bundle H:π*T(1,0)M ,where π:C^M→ M,and the singularities of these two connections are sub-varieties {0,∞}^M.If M is a semi-simple Frobenius manifold,it is known that these two meromorphic connections have irregular singularities.It is concluded that there exists a formal isomorphism between these two formalized bundles with connections by applying the classifications of irregular flat meromorphic connections.A constructional proof of the formal isomor-phism is given.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期5-9,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金青年基金资助项目(11201491 11201090) 博士点新教师类资助项目(20120171120009 20124410120001) 高校基本科研业务费青年教师培育资助项目(34000-3161248)
关键词 Frobeniu 流形 tt* -结构 CDV -结构 平坦亚纯联络 POINCARE Frobenius manifolds tt * -structures CDV-structures flat meromorphic connections Poin-care rank
  • 相关文献

参考文献9

  • 1CECOTFI S, VAFA C. Topological--anti-topological fu- sion [J]. Nuclear Physics B, 1991, 367(2): 359-461.
  • 2CECOTI'I S, VAFA C. On classification of N = 2 super- symmetric theories [ J]. Comm Math Phys, 1993, 158 (3) : 569 -644.
  • 3HERTLING C. Frobenius manifolds, their connections, and the construction for singularities [ J ]. J Reine Angew Math, 2003, 555: 77- 161.
  • 4SABBAH C. Universal unfolding of Laurent polynomials and tt * structures [ J ]//in From Hodge Theory to Inte- grability and TQFT: tt * - Geometry, Proc Symposia in Pure Math, Vol 78, American Math Society, Providence RI, 2008 : 1 - 29.
  • 5SABBAH C. D'eformations isomonodromiques et vari'et' es de Frobenius [ M]. EDP Sciences, 2002.
  • 6TAKAHASHI A. tt *- geometry of rank two [ J 1. Int Math Res Not, 2004, 22:1099-1114.
  • 7MANIN YURI I. Three constructions of Frobenius mani- folds: a comparative study [J]. Asian J Math, 1999, 3: 179 - 220.
  • 8LIN J Z. Some constraints on Frobenius manifolds with a tt * -structures [J]. Math Z, 2011,267 : 81 - 108.
  • 9LIN J Z, SABBAH C. Flat meromorphic connections of Frobenius manifolds with tt *-structure [ J ]. Journal.of Geometry and Physics, 2012, 62 : 37 -46.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部