摘要
研究了一类含有潜伏时滞和非线性发生率的SEIR流行病模型。给出了疾病流行的阈值条件,并且得到了无病平衡点和流行病平衡点的局部稳定性条件。通过构造适当的Lyapunov泛函,结合LaSalle不变集原理,证明了当基本再生数R0≤1时,无病平衡点是全局渐近稳定的;但当R0>1时,流行病平衡点是全局渐近稳定的,同时利用数值模拟验证了分析的结果。
A mathematical model describing the transmission dynamics of disease with nonlinear inci-dence rate and delay is constructed.The local stability of the disease-free equilibrium and epidemic equi-librium is established by analyzing the corresponding characteristic equation.Using suitable Lyapunov function and LaSalle's invariance principle,it is proved that if R0 1 then the disease-free equilibrium is globally asymptotically stable,but if R0 >1 then the epidemic equilibrium is globally asymptotically sta-ble.Some numerical simulations are also given to explain the conclusions.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期24-29,36,共7页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
福建省教育厅中青年教师教育科研资助项目(JA13283)
关键词
流行病
数学模型
潜伏期
复发
时滞
全局稳定性
epidemic disease
mathematical model
incubation period
latent relapse
delay
global stability