期刊文献+

含潜伏时滞效应和非线性发生率的SEIR模型的长时间行为 被引量:1

Long Time Behavior for an SEIR Epidemic Model with Latent Delay and Nonlinear Incidence Rate
下载PDF
导出
摘要 研究了一类含有潜伏时滞和非线性发生率的SEIR流行病模型。给出了疾病流行的阈值条件,并且得到了无病平衡点和流行病平衡点的局部稳定性条件。通过构造适当的Lyapunov泛函,结合LaSalle不变集原理,证明了当基本再生数R0≤1时,无病平衡点是全局渐近稳定的;但当R0>1时,流行病平衡点是全局渐近稳定的,同时利用数值模拟验证了分析的结果。 A mathematical model describing the transmission dynamics of disease with nonlinear inci-dence rate and delay is constructed.The local stability of the disease-free equilibrium and epidemic equi-librium is established by analyzing the corresponding characteristic equation.Using suitable Lyapunov function and LaSalle's invariance principle,it is proved that if R0  1 then the disease-free equilibrium is globally asymptotically stable,but if R0 >1 then the epidemic equilibrium is globally asymptotically sta-ble.Some numerical simulations are also given to explain the conclusions.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期24-29,36,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 福建省教育厅中青年教师教育科研资助项目(JA13283)
关键词 流行病 数学模型 潜伏期 复发 时滞 全局稳定性 epidemic disease mathematical model incubation period latent relapse delay global stability
  • 相关文献

参考文献15

  • 1FENG Z, HUANG W, CASTILLO-CHAVEZ C. On the role of variable latent periods in mathematical models for tuberculosis [ J]. J Dynam Differential Equations, 2001, 13 : 425 - 452.
  • 2HUO H, FENG L. Global stability for an HIV/AIDS epi- demic model with different latent stages and treatment [ J]. Appl Math Model, 2013, 37 : 1480 - 1489.
  • 3HETHCOTE H W, VAN DEN DRIESSCHE P. An SIS epidemic model with variable population size and a delay [J]. J Math Biol, 1995, 34:177 - 194.
  • 4HETHCOTE H W, VAN DEN DRIESSCHE P. Two SIS epidemilogic models with delays [ J ]. J Math Biol, 2000, 40:3 -26.
  • 5GAO S, CHEN L, TENG Z. Pulse vaccination of an SEIR epidemic model with time delay [ J ]. Nonlinear A- nal, Real World Appl, 2008, 9:599 -607.
  • 6VAN DEN DRIESSCHE P, ZOU X. Modeling relapse in in- fectious diseases [ J ]. Math Biosci, 2007, 207 : 89 - 103.
  • 7CHIN J. Control of communicable diseases manual [ M ]. Washington: American Public Health Association, 1999.
  • 8MARTIN S W. Livestock disease eradication: evaluation of the cooperative state-federal bovine tuberculosis eradi- cation program [M]. Washington: National Academy Press, 1994.
  • 9VANLANDINGHAM K E, MARSTELLER H B, ROSS G W, et aL Relapse of herpes simplex encephalitis after conventional acyclovir therapy [ J ]. JAMAJ, Am Med Asoc, 1988, 259:1051 - 1053.
  • 10ARDITI R, GINZBURG L R. Coupling in predator- prey dynamics : ratio-dependence [ J ]. J Theor Biol, 1989, 139:311 -326.

同被引文献11

  • 1PERELSON A, NELSON P. Mathematical models of HIV dynamics in vivo [J]. SIAM Review, 1999,41(1) 3 - 44.
  • 2REGOES R R, EBERT D, BONHOEFFER S. Dose-de- pendent infection rates of parasites produce the Allee effect in epidemiology [ J ]. Proceedings of the Royal of Society, 2002, 269(1488): 271 -279.
  • 3SONG X Y, NEUMANN A U. Global stability and peri- odic solution of the viral dynamics [ J ]. Journal of Mathe- matical Analysis and Applications, 2007, 329( 1 ) :281 - 297.
  • 4HERZ ANDERSON V M, BONHOEFFER S, ANDER- SON R M, et al. Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay [ J ]. Proceedings of the National Academy of Sciences, 1996, 93(14) : 7247 -7251.
  • 5BAIRAGI N, ADAK D. Global analysis of HIV-1 dynam- ics with Hill type infection rate and intracellular delay [ J]. Applied Mathematical Modelling, 2014, 38 (21/ 22) : 5047 - 5066.
  • 6. URSZULA F, JAN P. A delay-differential equation model of HIV related cancer-immune system dynamics [ J ]. Mathematical Biosciences and Engineering, 2011, 8 ( 2 ) : 627 - 641.
  • 7LI B, CHEN Y M, LU X J, et al. A delayed HIV-1 model with virus waning term [ J ]. Mathematical Biosci- ences and Engineering, 2016, 13(1) : 135 - 157.
  • 8LI D, MAW. Asymptotic properties of a HIV - 1 infec- tion model with time delay [ J ]. Journal of Mathematical Analysis and Applications, 2007, 335 ( 1 ) :683 - 691.
  • 9XU R. Global stability of an HIV - 1 infection model with saturation infection and intraeellular delay [ J ]. Journal of Mathematical Analysis and Applications, 2011, 375(1) : 75 -81.
  • 10HALE J K, VERDUYN LUNRL S M. Introduction to functional differential equations [ M ]. Berlin : Springer- Verlag, 1993 : 130 - 166.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部