期刊文献+

Cu^(2+)对酿酒酵母酒精发酵特性的影响 被引量:5

Effect of Cu^(2+) on Fermentation Characteristics of Saccharomyces cerevisiae
原文传递
导出
摘要 本文利用两株酿酒酵母Freddo(F菌)、BH8(B菌)和模拟葡萄汁发酵体系,研究了不同浓度Cu2+对酿酒酵母生长和发酵特性的影响。结果表明,Cu2+抑制发酵前期酵母生长、酒精发酵的程度和延长酒精发酵时间与Cu2+浓度正相关,当Cu2+浓度达到0.2 m M时,酵母酒精发酵出现提前终止。发酵结束时,B菌对照组葡萄糖和果糖的残留量为2.51 g/L、10.80 g/L,Cu2+0.1 m M处理组葡萄糖和果糖残留量分别为0.43 g/L、3.43 g/L,Cu2+0.1 m M处理促进了B菌发酵后期对糖的利用;F菌Cu2+处理组与对照组残糖量之间不存在显著性差异。B菌Cu2+0.1 m M处理组酒精总产量为10.80%,显著高于对照组的10.27%与Cu2+0.05 m M处理组的10.37%。B菌Cu2+0.05 m M处理组的甘油产量为6.66 g/L,显著高于对照组的6.37 g/L与Cu2+0.1 m M处理组的6.29 g/L;F菌Cu2+处理组与对照相比,酒精和甘油总产量之间不存在显著性差异,可见,不同株酵母对Cu2+逆境的适应性不同的。 The aim of this study was to understand the effect of Cu2+ on the growth and fermentation characteristics of Saccharomyces cerevisiae. An industrial S. cerevisiae strain Freddo (F) and a new S. cerevisiae strain BH8 (B) isolated in our lab were used, and a simulated grape juice fermentation system was conducted. The results showed that Cu2+ inhibited the early growth orS. cerevisiae, and the extent and time of alcoholic fermentation positively correlated with Cu2+ concentration. When fermentation with 0.2 mM Cu2+, the process terminated earlier. The Residual glucose and fi-uctose concentrations in the control (with no Cu2+ )for strain B were 2.51 g/L and 10.80 g/L, respectively. On the other hand, at 0.1 mM Cu2+, these values were 0.43 g/L and 3.43 g/L, respectively, for Cu2+-treated strain B. This indicated that 0. l mM Cu2+ promoted sugar utilization in late fermentation by strain B. There was no significant difference in residual sugar concentration between control and Cu2+-treated groups for strain F. The ethanol yield of 0.1 mM Cu2+-treated strain B was 10.80%, which was significantly higher than that of the control (10.27%) and 0.05 mM Cu2+-treated (10.37%) strain B groups. The glycerol yield of 0.05 mM Cu2+-treated strain B was 6.66 g/L, which was significantly higher than that of the control (6.37 g/L) and 0.1 mM Cu2+-treated (6.29 g/L) strain B groups. In comparison, Cu2+-treated strain F and control groups showed no significant difference in ethanol and glycerol yield. Therefore, the adaptability of different yeast strains to Cu2+ stress was different.
出处 《现代食品科技》 EI CAS 北大核心 2015年第1期32-36,31,共6页 Modern Food Science and Technology
基金 国家十二五科技支撑计划(2012BAD31B07) 国家自然科学基金(31471835) 北京市科技计划(D131100000513003)
关键词 酿酒酵母 二价铜离子 发酵 Saccharomyces cerevisiae Cu2+ fermentation
  • 相关文献

参考文献10

  • 1Arredondo M, Nunez M T. Iron and copper metabolism. [J]. Molecular Aspects of Medicine, 2005, 26:313-327.
  • 2Tapiero H, Townsend D M, Tew K D. Trace elements in human physiology and pathology: copper. [J]. Biomedicine & Pharmacotherapy, 2003, 57:386-398.
  • 3Gaetke L M, Chow C K. Copper toxicity, oxidative stress, and antioxidant nutrients. [J].Toxicology, 2003, 189:147-163.
  • 4Boubals D. Copper in the control of grapes in France. [J]. Vigevano, 2001, 28(5): 45-47.
  • 5Calisir F, Akman S. Survey of lead and copper in Turkish raisins. [J]. Food Additives & Contaminants, 2007, 9(24): 960-968.
  • 6Garcia-esparza M A, Capri E, Pirzadeh P, et al. Copper content of grape and wine from Italian farms. [J]. Food Additives and Contaminants, 2006, (23)3:274-280.
  • 7La Pera L, Dugo G, Rando R, et al. Statistical study of the influence of fimgicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine. [J]. Food Additives & Contaminants, 2008, 3(25): 302-313.
  • 8Mrvcic J, Stanzer D, Stehlik-Tomas, Skevin D, et al. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae. [J]. Journal of Bioscience and Bioengineering, 2007, 103(4): 331-337.
  • 9Marullo P, Bely M, Masneuf Pomarede I, et al. Inheritable nature of enological quantitative traits isdemonstrated by meiotic segregation of industrial wine yeast strains. [J]. FEMS Yeast Research, 2004, 4:711-719.
  • 10Moreira N, Mendes F, Hogg T, et al. Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. [J], International Journal of Food Microbiology, 2005, 103: 285-294.

同被引文献73

  • 1张德莉,黄应平,罗光富,刘德富,马万红,赵进才.Fenton及Photo-Fenton反应研究进展[J].环境化学,2006,25(2):121-127. 被引量:100
  • 2Arredondo M, Nunez M T. Iron and copper metabolism[J].Mol Aspects Med, 2005,26:313-327.
  • 3Tapiero H, Townsend D M, Tew K D. Trace elements in humanphysiology and pathology. Copper [J], Biomed Pharmacother,2003,57(9):386-398.
  • 4Panda S K. Impact of copper on reactive oxygen species, lipidperoxidation and antioxidants in Lemna minor [J].BiologiaPlantarum,2008, 52(3): 561-564.
  • 5Gaetke L M, Chow C K. Copper toxicity, oxidative stress, andantioxidant nutrients[J]. Toxicology, 2003,189(1-2): 147-163.
  • 6Lin Y,Tanaka S. Ethanol fermentation form biomass resources:current state and prospects[J]. Applied Microbiology &Biotechnology,2006,69(6): 627-642.
  • 7Rabinovich M L, Bioldlimiia P. Ethanol production frommaterials containing cellulose: the potential of approachesdeveloped in Russian[J]. Milrobiologiia,2006,42 (1): 5-32.
  • 8Li H, Guo A, Wang H. Mechanisms of oxidative browning ofwine[J]. Food Chemistry, 2008, 108: 1-13.
  • 9Ferreira J, Du Toit M, Du Toit W J. The effects of copper andhigh sugar concentrations on growth, fermentation efficiencyand volatile acidity production of different commercial wineyeast strains[J], Australian Journal of Grape and WineResearch, 2006, 12: 50-56.
  • 10Flora S, Mittal M, Mehta A. Heavy metal induced oxidativestress & its possible reversal by chelation therapy[J]. IndianJournal of Medical Research, 2008,128(4): 501-523.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部