期刊文献+

综合多特征的高分辨率极化SAR图像分割 被引量:6

Integrated multi-feature segmentation method for high resolution polarimetric SAR images
下载PDF
导出
摘要 针对高空间分辨率全极化数据的特点,基于分形网络演化分割算法框架,本文提出了一种综合K分布统计特征、Pauli分解特征和空间形状特征的高分辨率全极化SAR图像分割方法。该方法采用对数似然函数定义K分布统计特征异质度,对Pauli分解特征加权定义极化分解特征异质度。在此基础上,综合统计、极化分解和形状特征构建对象相似性准则,建立高分辨率全极化SAR图像多特征综合分割流程。通过模拟数据和ESAR全极化数据实验并与其他分割方法比较,验证了本文分割方法的有效性。 This paper proposed a novel segmentation method which integrates statistical distribution, geometric shape features and polarimetric decomposition features for high resolution polarimetric synthetic aperture radar (SAR) data. This method is based on the fractal network evolution algorithm (FNEA) that integrates K distribution statistics and Pauli decomposition features. Specifically, statistical heterogeneity of objects is defined by the maximum log likelihood function based on K distribution. Polarimetric decomposition heterogeneity of objects is calculated through the weighted sum of standard deviation of Pauli decomposition features. A total heterogeneity of objects is defined by the weighted sum of statistical heterogeneity, polarimetric decomposition heterogeneity and shape heterogeneity. Then, the multi feature segmentation procedure for high resolution po larimetric SAR data is constructed. The effectiveness of the integrated multi feature segmentation we develope is demonstrated by simulated data and L band E-SAR polarimetrie data.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期553-559,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(41301477 41471355) 中国博士后科学基金(2012M521497) 武汉市学科带头人计划项目(201271130443)资助课题
关键词 极化合成孔径雷达 分割 高分辨率 K分布 分形网络演化算法 polarimetric synthetic aperture radar(SAR) segmentation high resolution K distribution fractal network evolution algorithm
  • 相关文献

参考文献18

  • 1Lee J S, Grunes M R, Kwok R. Classification of multi-look polari- metric SAR imagery based on complex Wishart distribution[J]. hi ternational Journal o J Remote Sensing, 1994,15 (11) :2299 - 2311.
  • 2Conradsen K, Nielsen A A, Schou J, et al. a test statistic in the complex wishart distribution and its application to change detec- tion in polarimetric SAR data[J]. IEEE Trans. on Geoscience and Remote Sensing ,2003,41(1) :4-19.
  • 3Kersten P R, Lee J S, Ainsworth T L. Unsupervised classifica tion of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Trans. on Geoseience and Remote Sensing, 2005, 43(3) : 519 - 527.
  • 4Lee J S, Schuler D L, Lang R H, et al. K-distribution for multi- look processed polarimetric SAR imagery[C]//Proc, of the Geo science and Re,late Sensing Symposium, 1994: 2179-2181.
  • 5Beaulieu J M, Touzi R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE Trans. on Oeoscieme and Remote Sensing, 2004, 42(10) : 2063 - 2072.
  • 6Doulgeris A P, Anfinsen S N, Eltoft T. Classification with a non Gaussian model for POLSAR data[J]. IEEE Trans. on Geo- science and Remote Sensing, 2008, 46(10): 2999-3009.
  • 7吴永辉,计科峰,李禹,郁文贤.基于Wishart分布和MRF的多视全极化SAR图像分割[J].电子学报,2007,35(12):2302-2306. 被引量:13
  • 8张涛,胡风明,杨汝良.极化SAR数据的细节保持分割[J].系统工程与电子技术,2009,31(10):2372-2375. 被引量:3
  • 9Akbari V, Doulgeris A P, Moser G, et al. A textural-contextual model for unsupervised segmentation of multipolarization syn thetic aperture radar imagesEJ~. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51(4) : 2442 - 2453.
  • 10Hay G J, Blaschke T, Marceau D J, et al. A comparison of three image-object methods for the multiscale analysis of land- scape structure~J~. ISPRS Journal of Photogrammetry andRemote Sensing, 2003, 57(5/6): 327-345.

二级参考文献38

  • 1Smits P C, Dellepiane S G. Synthetic aperture radar image segmentation by a detail preserving Markov random field approach [J]. IEEE Trans. on Geoscience and Remote Sensing, 1997, 35(4): 844-857.
  • 2Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6 : 721 - 741.
  • 3Besag J E. On the statistical analysis of dirty picture[J]. J. Royal Stat. Soc. Ser. B, 1986, B-48; 259-302.
  • 4Lee J S, Grunes M R, Grandi G De. Polarimetric SAR speckle filtering and its impact on terrain classification. IEEE Trans. on Geoscience and Remote Sensing ,1999, 37(5) :2363 - 2373.
  • 5Beaulieu J M, Touzi R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE Trans. on Geoscience Remote Sensing, 2004, 42 (10) : 2063 - 2072.
  • 6Xu Feng, Jin Yaqiu. Deorientation theory of polarimetric scat tering targets and application to terrain surface classification[J] IEEE Trans. on Geoscience Remote Sensing, 2005, 43 (10): 2351 - 2364.
  • 7Park S E, Moon W M. Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane[J]. IEEE Trans. on Geoscience Remote Sensing,2007, 45 (8) : 2652 - 2664.
  • 8Lee J S, Grunes M R, Pottier E, et al. Unsupervised terrain classifcation preserving polarimetric scattering characteristics [J]. IEEE Trans. on Geoscience Remote Sensing ,2004, 42(4) : 722 - 731.
  • 9Kersten P R, Lee J S, Ainsworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM elustering[J]. IEEE Trans. on Geoscience and Remote Sensing,2005, 43(3) : 519 - 527.
  • 10Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Trans. on Geoscience Remote Sensing, 2005, 43 (8) : 1699 - 1706.

共引文献17

同被引文献39

  • 1汤沛,邱玉宝,赵志芳.合成孔径雷达(SAR)在地质、灾害应用研究中的新进展[J].云南大学学报(自然科学版),2012,34(S2):305-313. 被引量:5
  • 2闫柏琨,王润生,甘甫平,刘圣伟,杨苏明,陈伟涛,唐攀科.热红外遥感岩矿信息提取研究进展[J].地球科学进展,2005,20(10):1116-1126. 被引量:37
  • 3################
  • 4################
  • 5Lee J S, Pottier E. Polarimetric radar imaging from basics to applications[M]. New York, CRC Press, 2009.
  • 6Dabboor M, Collins M J, Karathanassi V, et al. An unsuper- vised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution[J]. IEEE Trans. on Geoscience and Remote Sensing, 2013,51 (7) = 4200 - 4213.
  • 7Rodriguez A, Laio A. Clustering by fast search and find of den sity peak[J]. Science, 2014, 344 (6191) : 1492-1496.
  • 8Morio J, Refregier P, Goudail F, et al. A characterization of Shannon entropy and Bhattacharyya measure of contrast in po- larimetric and interferometrie SAR image[J]. Proceedings of the IEEE, 2009, 97 (6) : 1097-1108.
  • 9Goferman S, Zelnik-Manor I., Tal A. Context-aware saliency detection[C]//Proc, of the I EEE Conference on Computer Vi- sion and Pattern Recognition, 2010 : 2376 - 2383.
  • 10程明明.图像内容的显著性与相似性研究[D].北京:清华大学,2012.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部