期刊文献+

基于空间域划分的分布式SLAM算法 被引量:1

Distributed simultaneous localization and mapping algorithm based on partition of space-region
下载PDF
导出
摘要 针对同步定位与地图构建(simultaneous localization and mapping,SLAM)中状态量高维时变的问题,本文通过综合集中式和分布式实现结构的各自优势,提出了一种基于空间域划分的分布式SLAM算法。该算法依据两个路标点与机器人连线之间的夹角,将整个空间域中的路标点进行区域划分,保证每个子空间域内含有两个不共线的路标点,并将每个空间域内的路标点组合构建观测模型,采用分布式无味粒子滤波器进行机器人位姿的估计,而采用联邦Kalman滤波完成对路标点的估计,并通过设计各子滤波器中粒子分布的调整方式改善了系统在动态重构过程的精度和稳定性。最后,通过实际数据的仿真试验证明所提算法具有更好的实时性和滤波精度。 To solve the problem of the simultaneous localization and mapping (SLAM) under the complex circumstance, a distributed algorithm of the SLAM based on partition of space-region is proposed considering the respective advantages of centralized configuration and distributed structure. The region is formed according to the angle between two landmarks and the robot, which is designed in case of the collinearity between two landmarks. The landmarks in each region are combined to establish the corresponding observation model. Be sides, the position of the robot is obtained by applying the distributed unscented particle filter and the positions of the landmarks are estimated simultaneously by employing the Kalman filter. Meanwhile, the accuracy and the stability are improved through constructing the adjustment of particle distribution during the dynamic reconfiguration process. Eventually, the better real-time capability and filter accuracy of the proposed SLAM algorithm are proved through simulation experiments which are supported by actual data.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期639-645,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(60975065) 北京市青年拔尖人才培育计划(CITTCD201304046)资助课题
关键词 同步定位与地图构建 空间域划分 分布式结构 动态重构 simultaneous localization and mapping (SLAM) partition of space-region distributed structure dynamic reconfiguration
  • 相关文献

参考文献16

  • 1Durant W H, Bailey T. Simultaneous localization and mapping:part I the essential algorithms[J]. Robotics and Automation Magazine, 2006, 13(2) :99 - 110.
  • 2Guivant J, Nebot E. Optimization of the simultaneous localization and map building algorithm for real time implementation[J]. Pro- ceedings of the IEEE Transactions of Robotics and Automation, 2001, 17(3):242-257.
  • 3Csorba M. Simultaneous localization and map building[R]. Ox ford: University of Oxford, 1997.
  • 4Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. Robotics Research, 1986,5 (4) ; 231 - 238.
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinear esti mation[J]. Proceeding of the IEEE Aerospace and Electronic Systems, 2004, 92(3):401-422.
  • 6Bolic M, Djuric P M, Hong S, et al. New resampling algorithms for particle filters[C]//Proc, of the IEEE International Confer ence on Robotics and Automation, 2003:589-592.
  • 7Montemerlo M, Thrun S, Koller D, et al. RBPF-SLAM:A fac tored solution to the simultaneous localization and mapping prob lem[C]// Proc. of the National Conference on Artificial Intel- ligence, 2002 : 593 - 598.
  • 8Montemerlo M, Thrun S, Koller D, et al. RBPF-SLAM 2.0:animproved particle filtering algorithm for simultaneous localization and rapping that probably converges[C]//Proc, of tlze Interna- tional Conference on Artificial Intelligence,2003:l151-1156.
  • 9Won D, Chun S, Sung S, et al. INS/SLAM system using dis- tributed particle filter[J].International Journal of Control, Automation and Systems, 2010, 8(6):1232-1240.
  • 10Pei F J, Wu M, Zhang S M, Distributed SLAM using improved particle filter for mobile robot localization[J].The Scientific World Journal, 2014:DO1:10. 1155/2014/239531.

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部