期刊文献+

Ad-hoc网络中基于博弈论和粒子群优化的协作算法

Cooperation algorithm based on game theory and particle swarm optimization for Ad-hoc networks
下载PDF
导出
摘要 为了促使Ad-hoc网络中的"自私"节点进行合作,提出了一种基于博弈论和粒子群优化的协作算法(Nash Bargaining of game theory and particle swarm optimization,NGPSO)在算法的第一阶段,源节点通过对中继节点转发的数据进行价格补偿,从而达到使中继节点参与合作的目的。将源节点的最优出价归结为纳什谈判问题,得到具有帕累托最优的激励价格,保证源节点和中继节点在合作中同时获得最佳收益;在算法的第二阶段,中继节点在获得源节点的最优出价后,通过粒子群优化算法得到最优的转发功率,使其合作收益增益最大。仿真表明,和随机价格激励相比,所提出的NGPSO算法能使源节点和中继节点达到最优收益;和中继节点固定功率转发相比,所提出的NGPSO算法,能显著提高源节点的能量效率和中继节点的收益,同时在适当设置中继节点转发功率的搜索空间时,可以保证总的能量效率。 To stimulate the selfish nodes of Ad-hoc networks to participate in cooperation, a cooperation algorithm based on Nash Bargaining of game theory and particle swarm optimization (NGPSO) is proposed. In the first stage of the proposed algorithm, the relay node is paid by the source node for forwarding source nodes' data, then cooperation between the source node and the relay node can be reached. We model the optimal bid of the source node as Nash bargain, and Nash equilibrium of the optimal bid which is Pareto efficient is given. Consequently, the optimal bid can guarantee that the source node and the relay node obtain optimal revenue. In the second stage of the proposed algorithm, after obtaining the optimal bid of the source node, the relay node determines optimal transmit power through particle swarm optimization to maximize its own cooperative gain. Simulation results show that, compared to random price incentive mechanisms, the NGPSO algorithm can make the source node and the relay node obtain optimal revenue. Meanwhile, the proposed algorithm improves the co operative gain of the relay node and the energy efficiency of the source node compared to the algorithm where the relay node uses constant transmit power. Furthermore, when the relay node appropriately sets its search space, the total energy efficiency of the whole system can be ensured.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期664-670,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61071104)资助课题
关键词 协作算法 博弈论 粒子群优化 能量效率 cooperation algorithm game theory particle swarm optimization energy efficiency
  • 相关文献

参考文献15

  • 1Marti S, Giuli T, I.ai K, et al. Mitigating routing misbehavior in mobile Ad hoe networks[C]//Prcc, of the IEEE International Gnjerence on Mohile Computing and Netzeorking ,2000:255 - 265.
  • 2Srinivasan V, Nuggehalli P, Chiasserini C F, et al. An analytical ap- proach to the study of cooperation in wireless ad hoc networks[J]. IEEE Trans. Wireless Communications, 2005,4 ( 2 ) : 722 - 733.
  • 3Felegyhazi M, HubauxJ P, ButtyanL. Nash equilibria of pack et forwarding strategies in wireless Ad hoc networks[J]. IEEE Trans. on Mobile Computingation, 2006, 5(5) : 463 - 476.
  • 4Ileri O, Mau S C, Mandayam N B. Pricing for enabling forward- ing in self configuring Ad hoe networks[J].IEEE Journal on Selected Areas Communications, 2005, 23(1): 151-162.
  • 5Shastry N, Adve R S. Stimulating cooperative diversity in wire less ad hoc networks through pricing[C]//Proc, of the IEEE International Conference on Communications, 2006:3747 - 3752.
  • 6Cong L, Zhao I., Zhang H, et al. Pricing-based game for spectrum allocation in multi relay cooperative transmission networks[J]. IET Communications, 2011, 5(4): 563-573.
  • 7Zhang G, Yang K, Ding E, et al. Fair and efficient resource sharing for selfish cooperative communication networks using co- operative game theory[C]//Proc, of the IEEE International Conference on Communications, 2011:1-5.
  • 8Zhang G, Yang K, I,iu P, et al. Joint channel bandwidth and power allocation game for selfish cooperative relaying networks[J]. IEEE Trans. on Vehicular Technology, 2012, 61(9): 4142-4156.
  • 9Zhang G, Yang K, Liu P, et al. Resource-exchange based coopera tion stimulating mechanism for wireless ad hoc networks[C]//Proc. of the I EEE International Conference on Cornmunicat ions, 2012 : 297 - 301.
  • 10Goodman D J, Mandayam N B. Power control for wireless data[J]. IEEEPersonal. Communications, 2000, 7(2): 48-54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部