期刊文献+

一类具有病毒变异的SEIR传染病模型的稳定性 被引量:8

The Stability of a Class of SEIR Epidemic Model with Virus Mutate
下载PDF
导出
摘要 考虑疾病在传播过程中病毒产生变异的影响,建立了具有病毒变异情况的SEIR传染病模型,借助Liapunov函数,分析了无病平衡点和地方病平衡点的全局稳定性.并通过数值模拟分析了模型中的参数对疾病传播的影响. In this paper, we consider the disease viruses mutate in the process of transmission, and the virus mutate situation of SEIR epidemic model is established. stability of equilibrium and the disease-free equilibrium. parameters for disease transmission of influence. With the help of function Liapunov, we analysise the global Numerical simulations are carried out to illustrate the main parameters for disease transmission of influence.
出处 《哈尔滨理工大学学报》 CAS 2014年第6期105-109,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省教育厅科学技术研究项目(12521099)
关键词 传染病模型 病毒变异 全局稳定性 epidemic model viruses mutate global stability
  • 相关文献

参考文献10

  • 1BRUNO Buonomo, DEBORAH Lacitignola. On the Dynamics of an SEIR Epidemic Model with a Convex Incidence Rate [ J ]. Ricerche Mat,2008,34(57) : 261 -281.
  • 2HE Yuying, GAO Shujing, LV Hengmin, et al. Asymptotic Be- havior of an SEIR Epidemic Model with Quadratic Treatment [ J]. J Appl Math Comput,2012 : 1 - 13.
  • 3KAHOUI, OTTO M E. Stability of Disease Free Equilibria in Epi- demiologieal Models[ J ]. Math. Comput. Sci, 2009,35 ( 2 ) : 517 - 533.
  • 4KOROBEINIKV A. Lyapunov Functions and Global Properties for SEIR and SEIS Epidemic Models[J]. Math. Med. Biol. J. IMA, 2004,12(21 ) :75 -83.
  • 5XU Rui, MA Zhien. Global Stability of a Delayed SEIRS Epidem- ic Model with Saturation Incidence Rate [ J ]. Nonlinear Dyn, 2010, 34 (61) : 229 - 239.
  • 6LI M Y, MULDOWNEY J S. Global Stability for the SEIR Model in Epidemiology[ J ]. Math. Biosci, 1995,35 ( 125 ) : 155 - 164.
  • 7ACKLEH A, ALLEN L. Competitive Exclusion and Coexistence for Pathogens in an Epidemic Model with Variable Population Size [J]. Math. Bid, 2003, 35(47) : 153 -168.
  • 8LI J, ZHOU Y, MA Z, et al. Epidemiological Model for Mutating Pathogens[J]. Appl. Math, 2004, 32(65) : 1 -23.
  • 9CAI Liming, XIANG Jingjing, LI Xuezhi, et al. A Two-strain Epidemic Model with Mutant Strain and Vaccination [ J ]. J Appl Math Comput, 2012,32(40) :125 - 142.
  • 10ANDREI Korobeinikov. Global Properties of SIR and SEIR Epi- demic Models with Multiple Parallel Infectious Stages[ J ]. Bulle- tin of Mathematical Biology,2009,35 (71) ,75 - 83.

同被引文献46

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部