期刊文献+

一类具有治愈期和免疫失效期的SIRS模型 被引量:2

The Stability and the Permanence of an SIRS Epidemic Model with Healing Period and Immune Expiration Period
下载PDF
导出
摘要 考虑具有治愈期和免疫失效期的离散双时滞的SIRS传染病模型,找到决定疾病灭绝与否的阈值,计算出模型的无病平衡点和地方病平衡点,证明了无病平衡点的全局稳定性.并利用反证法和比较原理,证明疾病的一致持久性.并通过数值模拟分析治愈期和恢复期对模型的影响. An SIRS epidemic model with two time delays in healing period and immune expiration period is re- searched. The threshold conditions which determines the epidemic termination were found out, the free-equilibrium and endemic equilibrium were calculated, and the global stability of free-equilibrium was proved. Using the method of rebuttal evidence and the comparison principle of differential equations, the uniform persistence of disease is proved. Immune expiration period and the recover period for the influence of epidemic model by numerical simula- tion were analyzed at last.
出处 《哈尔滨理工大学学报》 CAS 2014年第6期113-117,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省教育厅科学技术研究项目(12521099)
关键词 双时滞 治愈期 免疫失效期 稳定性 一致持久性 two time delays healing period immune expiration period stability uniform persistence
  • 相关文献

参考文献9

二级参考文献31

  • 1MENA-LORCA, HETHCOTE H W. Dynamic models of infectious disease as regulators of population biology[J]. J Math Biol, 1992,30 : 693-716.
  • 2GAO L, HETHCOTE H W. Disease transmission models with density-dependent demographics [J].J Math Biol, 1992,30:717-731.
  • 3HALE J K. Theory of functional differential equations[M]. New York:Springer-Verlag, 1977 : 43-45.
  • 4Muroya Y, Nakata Y, Izzo G, et al. Permanence and global stability of a class of discrete epidemic models[J]. Nolinear Anal Real World Appl, 2011, 12:2105-2117.
  • 5Enatsu Y, Nakata Y. Global stablity for a class of discrete SIR epidemic models[J]. Math Biol Engi, 2010, 7:347-361.
  • 6Tzzo G, Vecchio A. A discrete time version for models of population dynamics in the presence of an infection[J]. Comput Appl Math, 2007, 201:210-221.
  • 7Sekiguchi M. Permanence of a discrete SIRS epidemic model with time delays[J]. Appl Math Lett, 2010,23:1280-1285.
  • 8Sekiguchi M, Ishiwata E. Global dynamics of a discretized SIRS epidemic model with time delay[J], Math Anal Appl, 2010, 371:195-202.
  • 9Ma W, Takeuchi Y, Hara T, et aL Permanence of an SIR epidemic model with distributed time delay[J]. Tohoku Math, 2002, 54:581-591.
  • 10Takeuchi Y, Ma W, Beretta E. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Anal, 2000, 42:931-947.

共引文献16

同被引文献23

  • 1中国统计年鉴[M].北京:中国统计出版社,2012.
  • 2CUI Jingan, SUN Yonghong, ZHU Huaiping. The Impact of Media on the Control of Infectious Diseases [ J ]. Journal of Dynamics and Differential Equations, 2008 : 31 - 53.
  • 3GAO Daozhou, RUAN Shigui. An SIS Path Model with Variable Trans-Mission Coefficients [ J ]. Mathematical Biosciences, 2011 : 110-115.
  • 4GOVIND Prasad Sahu, JOYDIP Dhar. Dynamics of SEQIHRS Ep- idemic Model with Media Coverage, Quarantine and Isolation in a Community with Pre-existing[ J]. Journal of Mathematical Analysis and Applications, 2015 : 1651 - 1672.
  • 5MISRA A K, SHARMA A, SHUKLA J B. Modeling and Analysis of Effects of Awareness Programs Bymedia on the Spread of Infec- tious Diseases. Mathematical and Computer Modeling, 2011, 53: 1221 - 1228.
  • 6中国疾病预防控制中心,http://www.chinacdc.cn/,2013.
  • 7吴育红,付伟,桑丽,姜玉芬.某高校师生对甲型H1N1流感的认知和行为调查[J].中国学校卫生,2009,30(12):1124-1126. 被引量:4
  • 8陈力.媒体宣传对甲型H1N1流感预防控制的影响分析[J].中国社区医师(医学专业),2010,12(24):233-234. 被引量:2
  • 9刘小斌,吴晓鹭,陈景寿,潘业,李立新,陈滟珊,张静华,欧宏杰,曾建勇,刘家俊.甲型H1N1流感患者临床特征及疗效分析[J].国际流行病学传染病学杂志,2010,37(4):233-235. 被引量:1
  • 10赵瑜,原三领,李盼.一类含潜伏时滞的SIS传染病模型的定性研究[J].上海理工大学学报,2011,32(5):480-484. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部