摘要
随机微分方程是在解决某些具有随机现象建立起来的一类方程,其中随机微分方程的均方渐近概周期解相比于均方概周期解应用更加广泛.为了研究均方渐近概周期过程在随机微分方程中的应用,利用均方渐近概周期函数的相关性质以及Banach不动点原理讨论了一类随机积分-微分方程均方渐近概周期解的存在性和唯一性.
Stochastic differential equation is established by solving some stochastic phenomenon. Square-mean asymptotically almost periodic solutions of the equations are used more widely than square-mean almost periodic so- lutions. In order to study the applications of square-mean asymptotically almost periodic processes in the stochastic differential equations, the existence and uniqueness of square-mean asymptotically almost periodic solutions to a class of stochastic integro-differential equations are discussed using the properties of square-mean asymptotically al- most periodic functions and Banach fixed point theorem.
出处
《哈尔滨理工大学学报》
CAS
2014年第6期118-122,共5页
Journal of Harbin University of Science and Technology
基金
黑龙江省教育厅2011年度科学技术研究项目(12511110)
关键词
均方渐近概周期解
随机积分-微分方程
Banach不动点理论
square-mean asymptotically almost periodic solutions
stochastic integro-differential equation
Banach fixed point theorem