期刊文献+

稀疏系统辨识中最小均方算法的研究

Study of Least Mean Square Based Identification of Sparse Systems
下载PDF
导出
摘要 长时间以来,将稀疏性应用于自适应滤波框架引起了很多人在理论和应用问题上的研究兴趣。由于稀疏系统的普遍存在,利用稀疏性特性改进辨识算法就具有重要的理论意义和实用价值。首先介绍基于最小均方算法的稀疏系统辨识的研究背景及研究现状,然后给出稀疏系统的辨识模型,最后重点介绍几种稀疏最小均方算法并指出今后进一步的研究方向。 Sparsity exploitation in adaptive filtering framework has attracted considerable research interest in both theoretical and applied issues for a long time. Sparse systems are ubiquitous in many scenarios, using the sparsity to improve the identification algorithm will have theoretical significance and practical value. The research background and the current situation of the least mean square(LMS)based identification of sparse systems was introduced in this paper. Then,the chan-nel model of sparse systems was developed. Further-more, we introduce a series of sparse LMS algorithm. At last,the further work was indicated.
作者 林云 罗辉
出处 《现代电信科技》 2014年第12期42-46,共5页 Modern Science & Technology of Telecommunications
关键词 系统辨识 PNLMS ZA-LMS RZA-LMS 凸组合 System identification Proportionate NLMS PNLMS Zero-attracting LMS ZA-LMS Reweighted zero-attracting LMS RZA-LMS Convex combination
  • 相关文献

参考文献9

  • 1Duttweiler D L. Proportionate normalized least-mean- squares adaptation in ho cancellers [J]. IEEE Transactions on Speech and Audio Processing, 2000:508-518.
  • 2S.L. Gay, An efficient, fast converging adaptive filter for network echo cancellation [C]//Proc. Asilomar Conf. Signals, Systems, Comput, Nov., 1998:394-398.
  • 3J. Benesty, S.L. Gay, "An improved PNLMS algorithm" [C] //Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing, Orlando, Florida, USA, 2002:1881-1884.
  • 4J. Homer, I. Mareels, R.R. Bitmead, B. Wahlberg, and A. Gustafsson, LMS estimation via structural detection [J],IEEE Trans. Signal Process, vol. 46, October, 1998:2651-2663.
  • 5D.L. Donoho, Compressed sensing [J],IEEE Trans. Information Theory, vol. 52, no. 4, Apr., 2006:1289-1306.
  • 6Y. Chen, Y. Gu and A.O. Hero, Sparse LMS for system identification [C]//Prr. IEEEICASSP -2009, Taipei, Taiwan, Apr. 2009:3125-3128.
  • 7Gu Y, Jin J, and Mei S. 10 norm constraint LMS algorithm for sparse system identification [J].IEEE Signal Processing Letters, 2009:774-777.
  • 8Bijit Kumar Das and Mrityunjoy Chakraborty. Sparse Adaptive Filtering by an Adaptive Convex Combination of the LMS and the ZA-LMS Algorithms [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,VOL. 61, NO. 5, MAY 2014:1499-1507.
  • 9自适应滤波器原理:第4版,(加)赫金(Haykin.s)著;郑宝玉等译[M].北京:电子工业出版社,2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部