期刊文献+

随机微分方程波形松弛方法的稳定性

The stability of waveform relaxation methods for stochastic differential equations
下载PDF
导出
摘要 针对随机微分方程,提出波形松弛方法的稳定性定义,给出了方法稳定的充分条件,证明了方法在给定的条件下是渐进均方稳定的。将得到的定理用于线性随机微分方程,获得了方法的稳定性条件,该条件表明:对应特定分裂函数的波形松弛方法是稳定的。 The stability of waveform relaxation methods of stochastic differential equations was de- fined with the efficient conditions of the stability. The waveform relaxation methods were proved to be asymptotically mean squared stable under the given conditions. The stable conditions of the linear stochastic differential equations were obtained using the derived theorem. The results show that the waveform relaxation methods are stable for some specifically splitting functions.
作者 范振成
机构地区 闽江学院数学系
出处 《福建工程学院学报》 CAS 2014年第6期586-588,共3页 Journal of Fujian University of Technology
关键词 随机微分方程 波形松弛方法 稳定 stochastic differential equation waveform relaxation method stability
  • 相关文献

参考文献7

  • 1Lelarasmee E, Ruehli A, Sangiovanni-Vincentelli A. The waveform relaxation method for time domain analysis of large scale integrated circuits[ J]. IEEE Comput Aided Des Integr Circuits Syst, 1982( 1 ) :131 -145.
  • 2Janssen J, Vandewalle S. Muhigrid waveform relaxation on spatial finite element meshes: the discrete-time case [ J ]. SIAM J Sci Comput,1996,17 (2) : 133 - 155.
  • 3Garrappa R. An analysis of convergence for two-stage waveform relaxation methods[J]. J Comput Appl Math, 2004,169: 377 - 392.
  • 4Bao B, Song Y, Shen S. Semi-convergence of parameterized Uzawa waveform relaxation method for a class of differential-al- gebraic equations[J]. J Comput Appl Math, 2014, 258:67 -77.
  • 5Schurz H, Schneider K R. Waveform relaxation methods for stochastic differential equations[ J]. Int J Numer Anal Model, 2006,3(2) :232 -254.
  • 6Fan Z. Discrete time waveform relaxation method for stochastic delay differential equations [ J ]. Appl Math Compnt,2010, 217 ( 8 ) : 3903 - 3909.
  • 7Fan Z. Waveform relaxation method for stochastic differential equations with constant delay [ J ]. Appl Numer Math ,2011,61 (2) :229 -240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部