分数阶泛函微分方程组解的唯一性
Uniqueness of Solutions for Fractional Order Functional Differential Equations
摘要
研究了分数阶泛函微分方程组的初值问题,运用压缩映射原理证明了其解的唯一性。相关的例子验证了结论的有效性。
The initial value problem for the fractional functional differential equations was studied in this paper.The uniqueness of its solution was proved by the Banach contraction mapping principle The related example was given to verify effectiveness of the conclusion
出处
《新乡学院学报》
2014年第12期4-6,15,共4页
Journal of Xinxiang University
参考文献11
-
1MOHAMMED B, MOUFFAK B. Existence Results for Fractional Order Semilinear Functional Differential Equations with Nondense Domain[J]. Nonlinear A- nalysis, 2010, 72:925-932.
-
2JIANG W. The Constant Variation Formulae for Sin- gular Fractional Differential Systems with Delay[J].Computers and Mathematics with Applications, 2010, 59. 1184-1190.
-
3ZHOU Y, JIAO F, LI J. Existence and Uniqueness for Fractional Neutral Functional Differential Equa- tions with Infinite Delay[J]. Nonlinear Analysis, 2009, 71: 3249-3256.
-
4ZHOU Y, JIAO F, LI J. Existence and Uniqueness for P type Fractional Neutral Differential Equations [J].Nonlinear Analysis, 2009, 71: 2724-2733.
-
5ZHAO Y, SUN S, HAN Z. The Existence of Multiple Positive Solutions for Boundary Value Problems of Non- linear Fractional Differential Equations [J].Commun Nonlinear Sci Numer Simulat, 2011(16) : 2086-2097.
-
6JIANG D, YUAN C. The Positive Properties of the Green Function for Dirichlet-type Boundary Value Problems of Nonlinear Fractional Differential Equa- tions and Its Application[J].Nonlinear Analysis, 2010 (72): 710-719.
-
7LIANG S, ZHANG J. Existence and Uniqueness of Strictly Nondecreasing and Positive Solution for a Fractional Three-point Boundary Value Problem [J]. Comput Math Appl, 2011(62) : 1333-1340.
-
8YANG X, WEI Z, DONG W. Existence of Positive Solutions for the Boundary Value Problem of Nonlin ear Fractional Differential Equations[J]. Commun Nonlinear Sci Numer Simulat, 2012(17): 85-92.
-
9DING X, FENG Y, BUR. Existence, Nonexistence and Multiplicity of Positive Solutions for Nonlinear Fractional Differential Equations[J]. J Appl Math Comput, 2012(40): 371-381.
-
10PODLUBNY I. Fractional Differential Equations[M]. New York: Academic Press, 1999: 62-77.
-
1田涌波.带有多滞量的泛函微分方程组的振动性(英文)[J].数学研究,1997,30(2):126-131.
-
2刘胜.一类一阶泛函微分方程组的两个存在定理[J].内蒙古大学学报(自然科学版),1990,21(3):348-353.
-
3王汝凉.一类中立型泛函微分方程组的振动性[J].广西师院学报(自然科学版),1996,13(1):17-19.
-
4宋利梅.分数阶泛函微分方程边值问题正解的存在性[J].西南师范大学学报(自然科学版),2014,39(7):1-7. 被引量:2
-
5陈丽珍,凡震彬,李刚.预解算子控制的无穷时滞分数阶微分方程解的存在性[J].数学杂志,2016,36(6):1215-1221. 被引量:2
-
6宋利梅.具p-Laplace算子的分数阶微分方程边值问题的正解[J].高校应用数学学报(A辑),2014,29(4):443-452. 被引量:3
-
7张伟华,白占兵,陈伟,管婕妤.分数阶泛函微分方程边值问题解的存在性[J].科技信息,2012(1):32-32.
-
8张秀云,寇春海.分数阶泛函微分方程解的存在唯一性[J].东华大学学报(自然科学版),2007,33(4):452-454. 被引量:6
-
9肖存涛,翁佩萱.一类二维脉冲泛函微分方程组的振动性[J].华南师范大学学报(自然科学版),2003,35(1):30-37. 被引量:1
-
10李光华.非线性中立型泛函微分方程组的非振动解的存在性准则[J].数学学报(中文版),1993,36(6):808-816. 被引量:4