期刊文献+

车载飞轮电池用无轴承永磁同步电动机神经网络控制

Neural Network Control of Bearingless Permanent Magnet Synchronous Motors for Flywheel Battery of Vehicles
下载PDF
导出
摘要 针对电动汽车磁悬浮飞轮储能电池用无轴承永磁同步电动机(BPMSM)的非线性、强耦合、参数时变等特性,将单神经元PID和径向基函数神经网络(RBFNN)相结合,提出一种新型车载飞轮电池用BPMSM神经网络控制策略。采用RBFNN辨识BPMSM输入输出变量之间的关系,构建BPMSM系统的参考控制模型,通过MATLAB仿真软件对其进行仿真验证,结果表明,该控制方法可显著提高系统的静态和动态性能。 Aiming at the characteristics of bearingless permanent magnet synchronous motor (BPMSM) for magnetic suspended flywheel energy storage battery of electric vehicles, such as nonlinearity, strong coupling and time - varying parameters, a novel neural network control strategy which consists of single neuron PID and radial basis function neural network (RBFNN) is presented for BPMSM for flywheel battery of vehicles. The relation between input and output vari- ables for BPMSM is identified by using RBFNN, and the reference control model is constructed for BPMSM system. The simulation verification is carried out by MATLAB simulation software. The results show that the control method is able to significantly improve static and dynamic performance of system.
出处 《轴承》 北大核心 2015年第2期12-15,共4页 Bearing
基金 国家自然科学基金项目(51305170 51475214 61104016) 中国博士后科学基金项目(2014T70482 2012M521012 2014M561583) 江苏省自然基金项目(BK20130515 BK20141301) 江苏省六大人才高峰项目(ZBZZ-017) 江苏大学高级人才科研启动基金项目(12JDG057 14JDG076) 江苏高校优势学科建设工程项目
关键词 无轴承永磁同步电动机 电动汽车 神经网络控制 飞轮电池 BPMSM electric vehicle neural network control flywheel battery
  • 相关文献

参考文献11

二级参考文献64

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部