期刊文献+

胶原—壳聚糖人工支架的理化性质和相容性分析

Collagen-Chitosan compound scaffold Construction and the physicochemical property/biocompatibility analysis
下载PDF
导出
摘要 目的体外构建胶原—壳聚糖复合支架材料,分析其物理化学性质及生物相容性,探讨其应用于组织工程支架材料的可行性。方法利用冷冻干燥的方法构建三维多孔的胶原支架材料,通过甲醛交联以及添加壳聚糖的方法改善其物理化学性能。通过体外降解实验以及电镜扫描的方法检测材料的各项物理化学指标;通过细胞接种的方法研究材料的生物相容性。结果胶原—壳聚糖复合材料通过冷冻干燥的方法,能够获得稳定的三维多孔结构,电镜显示孔隙贯通,体外降解速度降低,并且能够支持细胞生长。理化性质分析显示该结构适合细胞生长,具有良好的生物相容性。结论本课题体外构建胶原—壳聚糖复合支架材料,满足组织工程生物材料的理化以及生物相容性要求,为其应用于组织工程支架材料提供重要的依据。 Objective We build up the Collagen-Chitosan compound scaffold in vitro, and study the physical, chemi- cal and biological properties, to analyze the feasibility in tissue engineering. Methods The three-dimensional porous scaffold was obtained by freezing-drying method, and optimized by using formaldehyde and Chitosan. We used hydrolysis in vitro and SEM scanning to investigate its physical and chemical proporties. The biocompatibility of scaffold was analyzed in MEF cells. Results Collagen-Chitosan compound scaffold we obtained by freezing-drying method was a kind of stable 3D vesicular structure. The scaffold degenerated in decreased velocity in vitro. The physical and chemical properties showed that it was suitable for the cells grow in it, which suggested that it has a good biocompatibility. Conclusion This kind of Collagen-Chitosan compound scaffold is constructed. It's qualified by the physical and chemical properties, and biocompatibility which the biomaterials require. The evidence are important for its application in tissue engineering.
出处 《广州医药》 2015年第1期32-36,共5页 Guangzhou Medical Journal
关键词 胶原 壳聚糖 组织工程 人工支架 生物相容性 Collagen Chitosan Tissue engineering Scaffold Biocompatibility
  • 相关文献

参考文献16

  • 1Lysaght M J, Nguy NA, Sullivan K. An economic survey of the emerging tissue engineering industry [ J ]. Tissue Eng, 1998, g (3): 231-238.
  • 2Yaylaoglu MB, Yildiz C, Korkusuz F, et al. Novel os- teochondral implant [ J ]. Biomaterials, 1999, 20 (16) : 1513-1520.
  • 3Yamaoka H, Asato H, Ogasawara T, et al. Cartilage tissue engineering using human auricular chondroeytes embedded in different hydrogel materials [ J]. J Biomed Mater Res, 2006 (4): 531-539.
  • 4Ming "IS, Ju CH, Geng CY. Characterization of colla- gen gel solutions and collagen matrices for cell culture [J]. J Biomat, 2001 (22) : 1713-1719.
  • 5Ma JB, Wang ILl, He BL, et al. A preliminary in vitro study on the fabrication and tissue engineering applica- tions of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts [J]. J Biomat, 2001 (22) : 331-336.
  • 6Muzzarelli R. Signification of chitosan based medical i- tems in dumitriused polymeric biomaterials [ J ]. Marcel Dekker Inc, 1994 (3): 179-184.
  • 7Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix protein in human osteoblasts and chondricytes [J]. J Biomed Ma- ter Res, 2000, 51 (4): 586-595.
  • 8Brown RA. Direct Collagen-Material engineering for tissue fabrication[J]. Tissue Eng Part A. 2013(21) : 32-38.
  • 9Sundarara JV. Porous ehitosan scaffolds for tissue engi- neering [J]. Biomaterials, 1999 (20): 1133-1142.
  • 10Kang HW, Tabatay, Ioshito Y. Fabrication of porous ge- latin scaffolds for tissue engineering [ J ]. Biomaterials, 1999, 20 (14): 1339-1344.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部