期刊文献+

基于区域协方差的图像特征融合方法 被引量:6

An Image Feature Fusion Method Based on Region Covariance
下载PDF
导出
摘要 考虑到不同特征代表图像的不同信息,融合后的特征更能体现图像的本质,概括总结了国内外各类图像特征融合方法,重点阐述分析了基于区域协方差的特征融合方法,该方法可以自然地融合多个相关特征,协方差计算本身具有滤波能力且效率高,最后通过设计合适的目标特征,基于区域协方差融合特征实现舰船目标识别。实验表明,协方差描述子可以较好地融合舰船可见光图像或红外图像的目标特征,提高目标识别能力。 Considering that different features indicate different image information, and combined features can represent the image better, we summarize various kinds of feature fusion methods. Furthermore, the feature fusion method based on region covariance is discussed in detail. This method is able to combine multiple target features naturally, and the computation itself has noise smoothing ability and is very efficiency. Finally, ship target recognition is realized by designing proper target features and fusing them with region covariance. The experimental results show that the region covariance method can fuse target features in the visible image or infrared image well, and has a good target recognition performance.
出处 《电光与控制》 北大核心 2015年第2期7-11,16,共6页 Electronics Optics & Control
基金 国家自然科学基金(61303192) 国防预研基金(9140A01060113JB14013)
关键词 特征融合 区域协方差 目标识别 feature fusion region covariance target recognition
  • 相关文献

参考文献24

  • 1WU C C, LEE W L, CHEN Y C, et al. Evolution-based hi- erarchical feature fusion for ultrasonic liver tissue charac- terization [ J ]. IEEE Journal of Biomedical and Health In- formatics, 2013, 17 ( 5 ) :967-976.
  • 2BATFITI R. Using mutual information for selecting features in supervised neural net learning [ J ]. IEEE Transactions on Neural Network, 1994, 5(4) :537-550.
  • 3HUANG X, ZHANG L P. An SVM ensemble approach com- bining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):257-272.
  • 4HOANG T V, TABBONE S A. Invariant pattern recognition using the RFM descriptor [ J ]. Pattern Recognition, 2012, 45( 1 ) :271-284.
  • 5ZHOU X L, BHANU B. Feature fusion of face and gait for human recognition at a distance in video[ C]//The 18th International Conference on Pattern Recognition, Hong Kong, China, 2006:529-532.
  • 6DEY A, SING J K, CHOWDHURY S. Fusion of direction- al spatial discriminant features for face recognition [ J ]. Procedia Technology, 2013, 10 : 747-754.
  • 7王凤朝,刘兴堂,黄树采.基于模糊证据理论的多特征目标融合检测算法[J].光学学报,2010,30(3):713-719. 被引量:15
  • 8王大伟,纪华,王延杰.应用复值独立分量分析实现特征融合识别[J].光学精密工程,2009,17(8):2024-2031. 被引量:3
  • 9何凤英,钟尚平,杨健.基于四元数多特征并行融合的JPEG隐写检测[J].计算机应用,2013,33(3):663-666. 被引量:2
  • 10RAJAGOPALAN A N, RAO K S, KUMAR Y A. Face recognition using multiple facial features [ J ]. Pattern Recognition Letters, 2007, 28 (3) :335-341.

二级参考文献66

共引文献20

同被引文献38

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部