期刊文献+

轮廓不变特征在待机飞行器识别中的应用 被引量:4

Application of Contour Invariant Features in Recognition of Standby Aircrafts
下载PDF
导出
摘要 飞行器拍摄到的待机飞行器图像常出现旋转、尺度、仿射等畸变,同时噪声等影响会使目标轮廓部分缺失。针对这个问题,提出了一种轮廓不变特征,并将其应用于待机飞行器识别当中,以分割出来的物体灰度图像为基础,利用椭圆拟合方法进行方向归一化,提取全局轮廓特征;根据轮廓中的关键点位置将轮廓划分为上下左右4部分局部轮廓,提取局部轮廓特征,将其当作神经网络的输入参数,利用神经网络作为分类器,达到识别物体的目的。设计了两组目标识别对比实验。实验结果证明此方法在噪声污染、轮廓提取不完整的情况下,仍能得到较高的识别率,优于传统的矩特征等方法。 The ground standby aircraft images taken by the aircraft are often affected by the distortion of rotation, scaling, affine etc, and the noise effects can make partial of target contour missing. To solve this problem, a new feature, entitled contour invariant feature, was proposed and applied in recognition of standby aircraft. Based on the object gray image obtained through segmentation, the ellipse fitting method was utilized to normalize the direction of the targets, and the global contour features were extracted. Then, the contour was divided into four parts according to the key points coordinates, and the local features were extracted. The global and local features were served as an input vector of the trained neural networks to distinguish whether the source image was the destination image. Two groups of target recognition comparative experiments were made. The results show that this method can obtain high recognition rate in spite of the noise pollution or incomplete contour extraction, which has better performance than state-of-the-art algorithms such as moments feature.
出处 《电光与控制》 北大核心 2015年第2期12-16,共5页 Electronics Optics & Control
基金 国家自然科学基金(61203189) 总装预研基金(9140A01060411JB4701)
关键词 目标识别 椭圆拟合 轮廓特征 特征提取 图像分割 target recognition ellipse fitting boundary feature feature extraction image segmentation
  • 相关文献

参考文献11

  • 1HUM K. Visual pattern recognition by moment invariants [ J ]. IRE Transactions on Information Theory, 1962, 8 ( 2 ) : 179-187.
  • 2TEAGUE M R. Image analysis via the general theory of moments [ J ]. JOSA, 1980, 70 ( 8 ) :920-930.
  • 3ZAHN C T, ROSKIES R Z. Fourier descriptors for plane closed curves [ J ]. IEEE Transactions on Computers, 1972, 100(3) :269-281.
  • 4XIONG H, ZHANG T, MOON Y S. A translation and scale- invariant adaptive wavelet transform [ J ]. IEEE Transac- tions on Image Processing, 2000, 9 ( 12 ) : 2100-2108.
  • 5RAHTU E, SALO M, HEIKKIL) J. Multiscale autoconvo- lution histograms for affine invariant pattern recognition [C]//The 16th British Machine Vision Conference, 2006: 1059-1062.
  • 6RAHTU E, SALO M, HEIKK1LA J. Affine invariant pat- tern recognition using muhiscale autoconvolution [ J ]. IEEE Transactions on Pattern Analysis and Machine Intel-ligenee, 2005, 27(6) .908-918.
  • 7夏永泉,刘正东,杨静宇.不变矩方法在区域匹配中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2152-2156. 被引量:21
  • 8曾万梅,吴庆宪,姜长生.基于组合不变矩特征的空中目标识别方法[J].电光与控制,2009,16(7):21-24. 被引量:8
  • 9吴高洁,李超,熊璋.一种目标识别中基于关键点的仿射不变矩[J].北京航空航天大学学报,2009,35(9):1043-1047. 被引量:2
  • 10张洁玉,陈强,白小晶,孙权森,夏德深.仿射不变的多尺度自卷积熵提取方法[J].计算机辅助设计与图形学学报,2009,21(9):1328-1332. 被引量:7

二级参考文献35

共引文献34

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部