期刊文献+

选矿月综合生产指标多目标优化方法 被引量:1

Multi-Objective Optimization of Ore Dressing Integrated Production Indices
下载PDF
导出
摘要 目前的选矿月综合生产指标优化模型中,其约束条件的参数是不变化的,为了提高现场数据的有效性,考虑到实际情况,模型中约束条件的变化会导致优化问题变为一个动态多目标优化的问题。因此,提出了一种基于移民策略的混合进化的算法用于新模型求解,最后通过现场数据实验验证算法的有效性。 In the current optimization model of ore dressing comprehensive production indices, the parame- ters of the constraint conditions are unchangeable. In view of the effectiveness of field data and the actual situation,changes in constraints of the model causes the optimization to be dynamic and multi-objective. Therefore,a new model for solving the problem based on the migration strategy and the mixed evolutionary algorithm was constructed, and finally the validity of the algorithm was confirmed by experimental field data.
出处 《甘肃科学学报》 2015年第1期25-30,共6页 Journal of Gansu Sciences
关键词 动态优化 梯度驱动 混合进化算法 Dynamic optimization Gradient driven Mixed evolutionary algorithm
  • 相关文献

参考文献6

  • 1Gang Yu, Tianyou Chai, Xiaochuan Luo. Muhiobjective Pro duction Planning Optimization Using Hybrid Evolutionary Al- gorithms for Mineral Processing[J]. IEEE Transactions on Ev olutionary Computation, 2011,15 (4) : 487-514.
  • 2杨顺梁,林任英.选矿知识问答[M].第2版.北京:冶金工业出版社,2003.
  • 3黄肖玲,丁进良,柴天佑.面向生产指标优化的选矿过程调度研究[J].系统工程学报,2006,21(2):136-142. 被引量:10
  • 4Shengxiang Yang,Renato Tinós.A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments[J].International Journal of Automation and computing,2007,4(3):243-254. 被引量:9
  • 5Renato Tin' os, Shengxiang Yang. Genetic Algorithms with Self Organizing Behaviour in Dynamic Environments[J]. Stud ies in Computational Intelligence ( SCI), 2007,51 : 105-127.
  • 6Zitzler E, Deb K,Thiele L. Multiobjective Evolutionary Algorithms A Comparative Case Study and the Strength Pareto Approach[J]. IEEE Trans. Evol. Comput. ,1999,3(4):257-271.

二级参考文献11

  • 1黄肖玲,赵立杰,李慧莹,柴天佑.基于四维一体的调度系统研究及在选矿厂的应用[J].控制与决策,2004,19(9):1008-1012. 被引量:4
  • 2黄肖玲,初延刚,李慧莹,柴天佑.选矿制造执行系统的研究与应用[J].计算机集成制造系统,2004,10(9):1079-1083. 被引量:12
  • 3Nagalingam S V,Lin G C I.Lastest developments in CIM[J].Robotics and Computer Integrated Manufacturing,1999,(15):423-430.
  • 4Everett J.E Iron ore production scheduling to improve product quality[J].European Journal of Operational Research,2001,129(2):355-361.
  • 5Huang Xiao-ling,Chu Yan-Gang,Yi Hu,et al.The Production Process Management System for Production Indices Optimization of Mineral Processing[C].Prague:16th IFAC World Congress,2005.July,4-8.
  • 6Shengxiang Yang,Xin Yao.Experimental study on population-based incremental learning algorithms for dynamic optimization problems[J].Soft Computing.2005(11)
  • 7L.D.Whitley.Fundamental Principles of Deception in Ge- netic Search[]..1991
  • 8M.Mitchell,S.Forrest,J.H.Holland.The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Perfor- mance[]..1991
  • 9J.J.Grefenstette.Genetic Algorithms for Changing Envi- ronments[]..1992
  • 10袁怀雨,胡永平,刘保顺,李克庆.优化铁精矿品位的意义与方法[J].金属矿山,1998,27(9):28-31. 被引量:6

共引文献17

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部