期刊文献+

热壁面位置对矩形腔内自然对流影响的数值分析 被引量:1

Numerical Analysis on Natural Convection in Rectangular Cavity Influenced by Positions of Thermal Walls
下载PDF
导出
摘要 对矩形腔内冷热壁面位于侧壁不同相对位置时的自然对流换热问题进行了数值模拟。腔体左侧局部壁面维持恒定高温,右侧局部壁面维持恒定低温,左右侧壁的其它部分以及顶部和底部壁面绝热。按照冷热壁面的相对位置是否左右对称,通过改变 Rayleigh 数的大小,分析了不同工况下矩形腔内温度场、流场和热壁表面平均 Nusselt 数的变化,得到了 Rayleigh 数在10^3-10^6之间的结果。冷热壁面对称分布时,位于侧壁中部的换热作用最强;不对称分布时,热壁面位于侧壁中部、冷壁面位于侧壁上部的换热作用最强。 A numerical simulation was performed to study the natural convection and heat transfer of fluid contained in a rectangular cavity influenced by the different positions of thermal walls.The partial part of the left side wall was set at a high constant temperature and the partial part of the right side wall was set at a low constant temperature.The other parts of the side walls and the top and bottom of the cavity were thermally insulated.Under the conditions of symmetrical or a symmetrical location of thermal walls,the flow and temperature fields and the average Nusselt number of thermal walls were analyzed under different Rayleigh numbers.The results were obtained with Rayleigh numbers between 103 and 106 .The heat transfer rate is high at the middle part of thermal walls in symmetrical case and at the middle-top part in asymmetrical case.
出处 《上海理工大学学报》 CAS 北大核心 2014年第6期527-531,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(51006071)
关键词 矩形腔 边界条件 自然对流 数值模拟 rectangular cavity boundary conditions natural convection numerical simulation
  • 相关文献

参考文献7

  • 1Ben N K,Chouikh R,Kerkeni C,et al.Numerical study of the natural convection in cavity heated from the lower corner and cooled from the ceiling[J].Applied Thermal Engineering,2006,26(7):772-775.
  • 2Das P K,Mahmud S,Tasnim S H,et al.Effect of surface waviness and aspect ratio on heat transfer inside a wavy enclosure[J].International Journal for Numerical Methods in Heat & Fluid Flow,2003,13(8):1097-1122.
  • 3Deng Q H,Tang G F,Li Y G.A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources[J].International Journal of Heat and Mass Transfer,2002,45(16):3437-3446.
  • 4Nithyadevi N,Kandaswamy P,Sivasankaran S.Natural convection in a square cavity with partially active vertical walls:time-periodic boundary condition[J].Mathematical Problems in Engineering,2006,206:1-16.
  • 5李娜,李志信,过增元.封闭空间内小尺度等温竖板自然对流的三维效应[J].上海理工大学学报,2003,25(3):218-220. 被引量:1
  • 6毛正荣,赵巍,张华,刘训海.低温冷柜内空气的传热与流动特性研究[J].上海理工大学学报,2003,25(1):21-23. 被引量:9
  • 7Corcione M.Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from bellow and cooled from above[J].International Journal of Thermal Sciences,2003,42(2):199-208.

二级参考文献12

  • 1朱光俊,李有章.小尺寸物体自然对流换热的数值模拟[J].北京科技大学学报,1994,16(3):235-239. 被引量:3
  • 2Baker E. Liquid cooling of microelectronic devices by free and forced convection[J]. Microelectronics and Reliability, 1972, 11: 213-222.
  • 3Baker E. Liquid immersion cooling of small electronic devices[J]. Microelectronics and Reliability,1973, 12: 163-193.
  • 4Park K A, Bergles A E. Natural convection heat transfer characteristics of simulated microelectronic chips[J]. Journal of Heat Transfer, 1987, 109: 90-96.
  • 5McAdams W H. Heat Transmission[M]. (3rd Ed).New York: McGraw-Hill Book Company, 1954.
  • 6Ishizuka M. The effects of the outlet area and the location of the main power supply unit on the cooling capability through naturally air-cooled electronic equipment casings[A]. Proc Instn Mech Engrs[C],1998, 212: 381-383.
  • 7Pafreezerar S V. Numerical Heat Transfer and Fluid Flow[M]. New York: McGran-Hill Book Company, 1987.
  • 8Sparrow E M, Cess R D. Radiation Heat Transfer [M]. (Augument Edition). New York: McGran-Hill Book Company, 1987.
  • 9俞炳丰,葛军,王志刚,邢涛,冯键,瞿幼明,周喜良,朱雪忠.冷冻箱内温度场、速度场的计算模拟[J].制冷学报,1997,18(1):51-57. 被引量:18
  • 10丁国良,L.R.Oellrich.冰箱箱内空气温度场与流场的优化研究[J].制冷学报,1998,19(1):22-27. 被引量:29

共引文献8

同被引文献11

  • 1陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2004:333-347.
  • 2Durst F,Melling A,Whitelaw J H. Low Reynoldsnumber flow over a plane symmetric sudden expansion[J]. Fluid Mech, 1974,64(1) :111 - 128.
  • 3Panagiotis N. Transition to asymmetry of generalisedNewtonian fluid flows through a symmetric suddenexpansion [ J ]. Journal of Non-Newtonian FluidMechanics,2006,133(2) :132 - 140.
  • 4Thiruvengadam M,Armaly B F,Drallmeier J A. Three-dimensional mixed convection in plane symmetric-sudden expansion: bifurcated flow regime [J]. ASMEJournal of Heat Transfer,2007,129(7) :819- 826.
  • 5Kitoh A, Sugawara K,Yoshikawa H, et al. Expansionratio effects on three-dimensional separated flow andheat transfer around backward-facing steps [J]. ASMEJournal of Heat Transfer,2007,129(9) : 1141 - 1155.
  • 6Mi J, Nathan G J, Wong C Y. The influence of inletflow condition on the frequency of self-excited jetprecession [J]. Journal of Fluids and Structures,2006,22(1):129-133.
  • 7Zhang K, Yang M,Zhang Y. Numerical analysis ofnatural convection in a cylindrical envelope with aninternal concentric cylinder with slots [J]. NumericalHeat Transfer, Part A: Applications, 2011,59 (10):739-754.
  • 8耿丽萍,周静伟,陶容.基于柯恩达效应的自激旋进射流流动特性研究[J].中国机械工程,2009(10):1217-1221. 被引量:5
  • 9赵海燕,贾雪松,杨士梅,郝明.突扩管分离流场的数值模拟[J].科学技术与工程,2009,9(17):5238-5240. 被引量:14
  • 10周再东,魏长柱,孙明艳,刘帅.突扩管流动形态的数值模拟[J].科学技术与工程,2012,20(30):7983-7985. 被引量:13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部