期刊文献+

基于密度法的传热结构拓扑优化设计 被引量:9

Structural Topology Optimization Design of Heat Transfer Based on Density Method
下载PDF
导出
摘要 传统的传热结构设计一般是基于热力学计算及工程经验,然而这种方法很难解决复杂边界条件的传热结构的设计问题.采用传热结构拓扑优化设计方法可有效解决传统设计方法难以解决的复杂边界问题.以密度法为基础,建立了散热弱度为目标函数的传热结构拓扑优化数学模型,推出了满足KKT(Karush-Kuhn-Tucker)条件的最优准则法迭代公式.采用高阶单元的方法消除了优化过程中的数值不稳定现象.通过Dirichlet边界和Neumann边界不同组合下的数值算例,验证了算法的有效性.薄壁管的算例也表明,该算法也适用于三维壳体问题. The topology optimization of variable density method was applied to heat transfer structure with complex construction,which is thought to be solved by traditional design method.Both the Dirichlet boundary and Neumann boundary conditions in steady-state heat conduction problems were considered.A topology optimization mathematical model based on the variable density method was developed,and the optimality criterion method satisfying the KKT (Karush-Kuhn-Tucker)condition was presented.Numerical examples with different boundary conditions were illustrated to verify the suggested approach.And the technique for eliminating numerical unstability,such as the checkerboard phenomenon,was also discussed. An example of thin walled tube shows that the method is also adapted to the three-dimensional problems.
出处 《上海理工大学学报》 CAS 北大核心 2014年第6期548-555,共8页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(50875174 51175347) 上海市教委科研创新重点资助项目(13ZZ114)
关键词 密度法 拓扑优化 传热 棋盘格 density method topology optimization heat conduction checkerboard
  • 相关文献

参考文献19

  • 1Bends?e M P.Optimal shape design as a material distribution problem[J].Structural Optimization,1989,4(1):193-202.
  • 2Bends?e M P,Kikuchi N.Generating optimal topologies instructuraldesign using a homogenizationmethod[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224.
  • 3Fujii D,Chen B C,Kikuchi N.Composite material design of two-dimensional structures using the homogenization design method[J].International Journal for Numerical Methods in Engineering,2001,50(9):2031-2051.
  • 4Wang M,Wang X,Guo D M.A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1/2):227-246.
  • 5Allaire G,Jouve F,Toader A.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,194(1):363-393.
  • 6Bends?e M P,Sigmund O.Topology optimization theory,methods and applications[M].Berlin:Springer Verlag,2003.
  • 7Iga A,Nishiwaki S,Izui K,et al.Topology optimization for thermal problems based on assumed continuous approximation of material distributions[J].Transacions of the Japan Society of Mechanical Engineers,Series C,2007,73(733):2426-2433.
  • 8Yamata T,Nishiwaki S.Level set-based topolog optimization method for thermal problems[J].Transacions of the Japan Society of Mechanical Engineers,Series C,2009,75(759):2868-2876.
  • 9Iga A,Yamada T,Nishiwaki S,et al.Topogy optimization for coupled thermal and srtuctural problems using the level set method[J].Transactions of the Japan Society of Mechanical Engineers,Series C,2010,76(761):36-43.
  • 10Bejan A.Constructal-theory network of conducting paths for cooling a heat generating volume[J].International Journal of Heat and Mass Transfer,1997,40(4):799-816.

二级参考文献15

  • 1左孔天,陈立平,钟毅芳,王书亭,张云清.基于人工材料密度的新型拓扑优化理论和算法研究[J].机械工程学报,2004,40(12):31-37. 被引量:63
  • 2Mlejnek H P, Schirrmacher R. An engineering approach to optimal material distribution and shape finding. Computer Methods in Applied Mechanics and Engineering, 1993,106: 1-26.
  • 3Sigmund O. Design of material structures using topology optimization: [PhD Dissertation]. Department of Solid Mechanics, Technical University of Denmark, 1994.
  • 4Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problems. Int. J. Solids Structures, 1994, 31(17): 2 313-2 329.
  • 5Bendsoe M P, Sigmund O. Topology Optimization: Theory,Methods and Applications, New York: Springer, 2003.
  • 6Sigmund O, Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998, 16: 68-75.
  • 7Cheng KT, Olhoff N. An investigation concerning optimal design of solid elastic plates. Int J Solids Structures, 1981,17:305~323
  • 8Bendsoe MP, Kikuchi N. Generating optimal topologies in optimal design using a homogenization method. Computational Methods in Applied Mechanics and Engineering,1988, 71:197~224
  • 9Bendsoe MP, Sigmund O. Material interpolations in topology optimization. Archive of Applied Mechanics, 1999, 69:635~654
  • 10Li Q, Steven GP, Xie YM. On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Structural Optimization, 1999, 18:67~73

共引文献62

同被引文献42

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部