摘要
传统的传热结构设计一般是基于热力学计算及工程经验,然而这种方法很难解决复杂边界条件的传热结构的设计问题.采用传热结构拓扑优化设计方法可有效解决传统设计方法难以解决的复杂边界问题.以密度法为基础,建立了散热弱度为目标函数的传热结构拓扑优化数学模型,推出了满足KKT(Karush-Kuhn-Tucker)条件的最优准则法迭代公式.采用高阶单元的方法消除了优化过程中的数值不稳定现象.通过Dirichlet边界和Neumann边界不同组合下的数值算例,验证了算法的有效性.薄壁管的算例也表明,该算法也适用于三维壳体问题.
The topology optimization of variable density method was applied to heat transfer structure with complex construction,which is thought to be solved by traditional design method.Both the Dirichlet boundary and Neumann boundary conditions in steady-state heat conduction problems were considered.A topology optimization mathematical model based on the variable density method was developed,and the optimality criterion method satisfying the KKT (Karush-Kuhn-Tucker)condition was presented.Numerical examples with different boundary conditions were illustrated to verify the suggested approach.And the technique for eliminating numerical unstability,such as the checkerboard phenomenon,was also discussed. An example of thin walled tube shows that the method is also adapted to the three-dimensional problems.
出处
《上海理工大学学报》
CAS
北大核心
2014年第6期548-555,共8页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(50875174
51175347)
上海市教委科研创新重点资助项目(13ZZ114)
关键词
密度法
拓扑优化
传热
棋盘格
density method
topology optimization
heat conduction
checkerboard