期刊文献+

基于Group Lasso的多源电信数据离网用户分析 被引量:2

Group Lasso-Based Feature Selection for Off-network Analysis in Multisource Teledata
下载PDF
导出
摘要 随着行业竞争愈演愈烈,电信企业的客户流失情况越来越严重,给电信企业造成了巨大损失.通过电信企业的数据来做离网用户的预测,从而进一步作出挽留客户的正确决策,成为电信企业日益关注的问题.面对电信后台汇总的多源数据,经分析发现其呈现天然的组结构.为了选择对于离网类别最具判别性的特征,本文使用了一种基于Group Lasso的组特征选择方法,在此基础上用交叉验证法选择适当的特征组,最终将选择出的少量组特征用于预测离网和停机的宽带用户.实验表明,在江苏某地级市电信离网用户分析数据中取得了比其他特征选择方法的精度平均高至少10%的预测性能. With the intensified competition in the industry,customer churn analysis is becoming one of the most significant tasks for the telecom companies,which might lead great financial loss to them. Thus,using the data to predict potential off-network customers and then making business decisions to retain these customers,have drawn lots of attention nowadays. In this paper,we present a Group Lasso-based feature selection method to predict the latent off-network customers by analyzing the corresponding multisource teledata. Specifically,we utilize the cross-validation strategy to choose the optimal sets of feature groups. Extensive experiment results show that the proposed approach has the superior performance( the Precision value is 10% higher than the other methods) on a real telecom dataset derived by a certain city in a prefectural city of Jiangsu.
出处 《南京师范大学学报(工程技术版)》 CAS 2014年第4期77-83,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(61035003 61175042 61021062 61305068) 江苏省科技厅项目(BK2011005 BK20130581) 新世纪人才项目(NCET-10-0476) 江苏省医疗专项(BL2013033) 江苏省高校研究生科研创新计划项目(CXZZ13_0055)
关键词 电信企业 客户流失 多源数据 特征选择 GROUP Lasso telecom companies customer churn multisource data feature selection Group Lasso
  • 相关文献

参考文献17

  • 1王雷,陈松林,顾学道.客户流失预警模型及其在电信企业的应用[J].电信科学,2006,22(9):47-51. 被引量:17
  • 2田玲,邱会中,郑莉华.基于神经网络的电信客户流失预测主题建模及实现[J].计算机应用,2007,27(9):2294-2297. 被引量:18
  • 3Richter Y, Yom-Tov E, Slonim N. Predicting customer churn in mobile networks through analysis of social groups [ C ]// Proceedings of SIAM International Conference on Data Mining. Columbus ,2010:732-741.
  • 4Idris Adnan, Asifullah Khan, YeonSoo Lee. Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification [ J ]. Applied Intelligence,2013,39 (3) : 659-672.
  • 5Guyon, Isabelle, Andr6 Elisseeff. An introduction to variable and feature selection [ J ]. The Journal of Machine Learning Research,2003(3) :1 157-1 182.
  • 6Cong Y, Yuan J S, Liu J. Sparse reconstruction cost for abnormal event detection [ C]//Proeeedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Conference Society,2011:3 449-3 456.
  • 7R Tibshirani. Regression shrinkage and selection via the lasso [ J ]. Journal of the Royal Statistical Society:Series B (Methodo- logical), 1996,58( 1 ):267-288.
  • 8Fan Jianqing, Li Runze. Variable selection via nonconcave penalized likelihood and its oracle properties [ J ]. Journal of the American Statistical Association,2001,96(456) :1 348-1 360.
  • 9Robert Tibshirani, Michael Saunders. Sparsity and smoothness via the fused lasso[ J ]. Journal of the Royal Statistical Society: Statistical Methodology,2005,67( 1 ) :91-108.
  • 10Zou Hui. The adaptive lasso and its oracle properties [ J ]. Journal of the American Statistical Association,2006,101 (476) : 1 418-1 429.

二级参考文献13

  • 1叶进,林士敏.基于贝叶斯网络的推理在移动客户流失分析中的应用[J].计算机应用,2005,25(3):673-675. 被引量:12
  • 2叶进,张向利,张润莲.基于数据挖掘的移动客户流失分析系统[J].计算机系统应用,2005,14(2):61-64. 被引量:3
  • 3郭明,郑惠莉,卢毓伟.基于贝叶斯网络的客户流失分析[J].南京邮电学院学报(自然科学版),2005,25(5):79-83. 被引量:14
  • 4赵霞.3G引发运营支撑系统演变,http://www.cena.com.crghtm/Article_detail.asp?id= 12202
  • 5艾瑞市场咨(iResearch).1999—2004中国移动和中国联通用户的离网率.http://www.iresearch.com.cn/html/elecom/detail-views-id_ 19054.htmt
  • 6罗布.马蒂森.电信业客户流失管理—电信管理精选译丛.北京:人民邮电出版社.2006
  • 7刘云波.进化:从供求链到生态链,http://www.e-port.cn/gnxx/itzx/352.htm
  • 8张九陆.何以“待客”—新竞争时代大客户营销新思索. http://www.ccidcom.com/weekly/news/35/2004126170637.htm
  • 9张锐.通信企业客户流失分析的研究[J].邮电规划,2004,(4).
  • 10HUNG S Y,YEN D C,WANG H Y.Applying data mining to telecom churn management[J].Expert Systems with Applications,2006,31(3):515-524.

共引文献33

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部