期刊文献+

基于重构的多工况过程无监督故障幅值估计

Unsupervised fault magnitude estimation of multi-mode industrial process based on reconstruction
下载PDF
导出
摘要 针对先验知识不足的多工况工业过程的故障幅值估计问题,提出了一种基于重构算法的故障幅值估计方法。通过保局投影(Locality Preserving Projection,LPP)对历史数据进行降维,然后利用模糊c均值(Fuzzy C-means,FCM)实现对各个工况的划分,并确定检测指标和控制限、建立故障检测模型,最后利用重构算法来提取故障方向矩阵,并估计出故障的幅值。以田纳西-伊斯曼(Tennessee Eastman,TE)过程为研究对象进行仿真,结果表明提出的算法可以准确地估计出多工况工业过程的故障幅值、描述出故障幅值曲线。 To solve the problem of fault magnitude estimation during the muhi-mode industrial process lack of prior knowledge, a fault magnitude estimation method based on reconstruction is proposed. The dimensionality reduction of historical data is realized by LPP (locality preserving projection), and the division of each operational mode is realized by FCM(fuzzy C means clustering). Then the weighted monitoring index and control limit are defined. A fault detection model is established. At last, the fault direction matrix is extracted by reconstruction, and then the amplitude of the fault is estimated, the Tennessee Eastman benchmark process is selected to carry out simulation. The results show that the proposed algorithm can accurately estimate the fault magnitude of the multi-mode industrial process and describe the fault amplitude curve.
作者 杨晔 马洁
出处 《北京信息科技大学学报(自然科学版)》 2015年第1期41-45,共5页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(61273173)
关键词 故障幅值估计 保局投影 模糊C均值聚类 故障重构 fault magnitude estimation locality preserving projection fuzzy C-means fault recon- struction
  • 相关文献

参考文献11

  • 1Thomhill N F, Shah S L, Huang B, et al. Spectral principal componentanalysis of dynamic process data [ J ]. Control Engineering Practice, 2002, 10(8) :833 -846.
  • 2Kruger U, Kumar S, Littler T. Improved principal component monitoring using theloeal approach [ J]. Automatica. 2007, 43 (9) : 1532 - 142.
  • 3Lee J M, Qin S J, Lee I. B. Fault detection of non-linear processes using kernel independentcomponent analysis [ J]. Canadian Journal of Chemical Engineering, 2007, 85 4 ) : 526 -536.
  • 4Ng Y S, Srinivasan R. An adjoined multi-mod- el approach formonitoring batch and transient operations [ J]. Computers & Chemical Engi- neering, 2009, 33 (4) : 887 -902.
  • 5Liu J L, Chen D S. Fault detection and identi- fication usingmodified Bayesian classification on PCA subspace [ J ]. Industrial & Engineering Chemistry Research, 2009, 48 ( 6 ) : 3059 - 3077.
  • 6Ge Z, Song Z. Mixture Bayesian regularization method of PPCA for muhimode process monitoring [J]. AIChEJournal, 2010, 56 ( 11 ) : 2838 - 2849.
  • 7Chen J H, Lio J L. Mixture principal compo- nent analysismodels for process monitoring [ J ]. Industrial & Engineering Chemistry Research, 1999, 38 (4) : 1478-1488.
  • 8牛征,刘吉臻,牛玉广.动态多主元模型故障检测方法在变工况过程中的应用[J].动力工程,2005,25(4):554-558. 被引量:17
  • 9Liu J L. Fault detection and classification for a process withmuhiple production grades [ J ]. Industrial & EngineeringChemistry Research, 2008, 47 (21) : 8250-8262.
  • 10解翔,侍洪波.Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace[J].Chinese Journal of Chemical Engineering,2012,20(6):1174-1179. 被引量:5

二级参考文献12

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部