摘要
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.
基金
Project supported by the National Natural Science Foundation of China(Nos.11472066 and11172336)
the Chongqing Natural Science Foundation(No.cstc2013jcyj A50018)
the Program for New Century Excellent Talents in University(No.ncet-13-0634)
the Fundamental Research Funds for the Central Universities(Nos.CDJZR13240021 and CDJZR14328801)