摘要
本文研究了涉及固定超曲面的全纯映照的正规性问题.利用Aladro和Krantz对全纯映射族正规性的刻画和Shirosahi建立的一系列涉及一些特殊复代数超曲面的Picard型定理,得到了全纯映射族的一些正规定则.
In this paper, we study the normal families of meromorphic mappings. Applying the heuristic principle in several complex variables obtained by Aladro and Krantz [1] and some Picard theorems given by M. Shirosahi, we shall prove some normality criterias for families of holo- morphic mappings of several complex variables into pn (C), the n-dimensional complex projective space, related to some special hypersurfaees.
出处
《数学杂志》
CSCD
北大核心
2015年第1期69-74,共6页
Journal of Mathematics
基金
Supported by the NSFC(11401291
11101201)
NSF of ED of Jiangxi(GJJ13077)
关键词
正规族
全纯映射
超曲面
值分布理论
normal families
holomorphic mappings
hypersurfaces
value distribution theory