期刊文献+

CoMn_2O_4新型锂离子电池负极材料的合成与性能研究

Synthesis and Properties of Novel CoMn_2O_4 Spheres for Lithium-Ion Batteries Anodes
下载PDF
导出
摘要 以Co(Ac)2·4H2O和Mn(Ac)2·4H2O为原料,乙二醇为溶剂,采用简单的一步水热法成功地合成了CoMn2O4微球。使用X射线衍射(XRD)和透射电子显微镜(TEM)对合成的产物进行物相和形貌分析。采用蓝电测试系统对产物进行电化学性能测试,结果表明,当CoMn2O4微球用作锂离子电池负极材料时,在电流密度为100mA·g-1的条件下,其首次放电容量为1056mAh·g-1,50次充放电循环后容量仍保持在611.7mAh·g-1左右并趋于稳定,呈现出良好的循环性能。 CoMn2O4 microspheres were fabricated by one-step hydrothermal route using Co(Ac)2 · 4H2O and Mn(Ac)2 · 4H2O. The crystalline phase and the morphology were characterized by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The electrochemical properties of the composites were evaluated by the LAND testing system. When the composites were tested as a negative material for lithium ion batteries, the results displayed that the CoMn2O4 samples exhibited a first discharge capacity as 1056 mAh/g at a high current density of 100mA/g, and it remained at 611.7mAh/g after 50 cycles and tended to be stable. Therefore, it was confirmed that the as-resultant products displayed excellent cycling performances.
出处 《化工技术与开发》 CAS 2015年第1期18-20,40,共4页 Technology & Development of Chemical Industry
关键词 CoMn2O4 锂离子电池 微球 负极 CoMn2O4 lithium-ion batteries microspheres negative
  • 相关文献

参考文献13

  • 1Arai J, Yamaki T, Yamauchi S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles[J]. J. Power Sources, 2005, 146(1/2): 788-792.
  • 2Verbrugge M W, Liu P. Electrochemical characterization of high-power lithium-ion batteries using triangular voltage and current excitation sources[J]. J. Power Sources, 2007, 174(1): 2-8.
  • 3Divya K C, Ostergaard J. Battery energy storage technology for power systems an-overview[J]. Electric Power Systems Research, 2009, 79(4): 511-520.
  • 4Brann P V, Cho J, Pikul J H, et al. High power reehargeable batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(3): 186-198.
  • 5Scrosati B, Garehe J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419- 2430.
  • 6Taraseon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(861): 359-367.
  • 7Yang Y, Zhao Y, Xiao L, et al. Nanocrystalline ZnMn204 as a novel lithium- storage material[J]. Electrochemistry Communications, 2008, 10(8): 1117-1120.
  • 8Deng Y, Tang S, Zhang Q, et al. Controllable synthesis of spinel nano-ZnMn204 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(32): 1987-1995.
  • 9Xiao L, Yang Y, Yin J, et al. Low temperature synthesis of flower-like ZnMn204 superstructures with enhanced electrochemical lithium storage[J]. Journal of Power Sources, 2009, 194(2): 1089-1093.
  • 10Courtel F M, Duncan H, Abu-Lebdeh Y, et al. Highcapacity anode materials for Li-ion batteries based on spinel metal oxides AMn2Oa (A= Co, Ni, and Zn)[J]. Journal of Materials Chemistry, 2011, 21(27): 10206-10218.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部