摘要
The rapid cycling synchrotron (RCS) is part of the China Spallation Neutron Source (CSNS). The RCS provides 1.6 GeV protons with a repetition rate of 25 Hz. The RF system in RCS is mainly composed of a ferrite loaded RF cavity, a high power tetrode amplifier, a bias supply of 3300 A and a digital low level RF (LLRF) system based on FPGA. The major challenge of the LLRF system is to solve problems caused by rapid frequency sweeping and the heavy beam loading effect. A total of eight control loops are applied to ensure the normal operation. An effective feedforward scheme is widely used to improve the dynamic performance of the system. The design of the LLRF system and high power integration test results with the prototype RF system are presented.
The rapid cycling synchrotron (RCS) is part of the China Spallation Neutron Source (CSNS). The RCS provides 1.6 GeV protons with a repetition rate of 25 Hz. The RF system in RCS is mainly composed of a ferrite loaded RF cavity, a high power tetrode amplifier, a bias supply of 3300 A and a digital low level RF (LLRF) system based on FPGA. The major challenge of the LLRF system is to solve problems caused by rapid frequency sweeping and the heavy beam loading effect. A total of eight control loops are applied to ensure the normal operation. An effective feedforward scheme is widely used to improve the dynamic performance of the system. The design of the LLRF system and high power integration test results with the prototype RF system are presented.
基金
Supported by National Natural Science Foundation of China(11175194)